Download presentation
Presentation is loading. Please wait.
1
7. Nuclear models Fermi gas model Shell model
2
Statistics of the Fermi distribution
Fermi Gas Model Free electron gas: protons and neutrons moving quasi-freely within the nuclear volume 2 different potentials wells for protons and neutrons. Spherical square well potentials with the same radius Statistics of the Fermi distribution Given a volume V the numer of states dn goes like: 4p2dpV dn If T=0 the nucleus is in the ground state and (2h)3 p (Fermi Momentum) is the maximum possible F momentum of the ground state. n pF 4p2dpV Vp3 (2h)3 6 2h3 F N= number of neutrons Z= number of protons Vp3 Vp3 Z F, p N 2n F ,n 3 2h3 3 2h3 Spin 1/2 particles
3
p2 o F p Fermi Energy E F 33 MeV 2m 4 4 V R R A
3 3 R 1.21 fm 3 3 1 A 4 R3 Ap3 h 9 3 o F p Z N A /2 p p 250MeV /c 2 3 3 2h3 F F ,n F , p R 8 The nucleon moves in the nucleus with a large momentum p2 Fermi Energy E F 33 MeV F 2m N Binding Energy: BE/A= 7-8 MeV V0=EF+B/A~ 40MeV Nucleons are rather weakly bound in the nucleus
4
Potential well in the Fermi-gas model
The neutron potential well is deeper that the proton well because of the missing Coulomb repulsion. The Fermi Energy is the same, otherwise the p-->n decay would happen spontaneously. This implies that they are more neutrons states available and hence N>Z the heavier the nuclei become.
5
E p2dp p2dp p2 N 3 2h3 N 9 2h3 3 pFN EKin
E 0 F 20MeV Kin pF p2dp 5 2m N 3 E (N,Z) N E Z E (Np 2 Zp ) 2 Kin Kin,N Kin,Z 10m F,N FZ N 1 N 3 2h3 N 9 2h3 3 pFN 1 EKin Decay V 4R A 3 Z 3 2h3 Z 9 2h3 3 pFZ V 4R A 3 2 5 5 3 h2 9 2h3 3 Z 3 N 3 EKin 1190m R 4R 0 3 5 2 A 3 5 N N-Z h2 2 2 3 9 3 N 3 Z 3 5 (N Z)2 10mN R0 84 9 A 3 h2 9 3 ... EKin 2 A R0 10mN 4 2 2 A 3 p2, se Z = N, di ciascun nucleone F
6
N Z A D 5 3 A D 5 3 N 5 3 Z 5 3
L’espressione precedente si ottiene da: D N Z N= A N Z 1 A D 2 2 2 Z = A N Z 1 A D 2 2 2 sostituendo in: A D 5 3 A D 5 3 N 5 3 Z 5 3 2 2 A2 3 A2 3 e sviluppando i binomi arrestandosi al secondo ordine: 5 A5 3 2 N 5 3 Z 5 3 A D A D A A D A D 2 3 1 3 1 3 A 2 3 2 5 A 2 3 N 5 3 Z 5 3 2 1 3 10 D2 1 3 5 D2 2A A A 2 2 3 9 A 2 9 A NOTA BENE: A) Il risultato prova che l’energia cinetica totale ha un MINIMO quando N = Z, e dato che E(totale) = T –V, con T proporzionale ad A, E(totale), che e’ negativa ed e’ anche la BINDING ENERGY totale, e’ proporzionale ad A (primo termine dell’equazione semiempirica delle masse) B) Aggiungendo il secondo termine, come nell’equazione semiempirica delle masse, la BINDING ENERGY diminuisce in modulo. A parte I valori dei coefficienti, il modello a gas di Fermi predice correttamente 2 N Z A EB T V c A c Vol Sym
7
Calculation of the state density
Considering the approximation that the nuclear potential shold have a sharp edge in correspondence of the nuclear radius, one can approximate that to particles trapped in the pot potential h2 h2 2 2 2 E 2m 2m x y 2 z 2 2 Volume in which the state density is calculated h2 2 X (x) 2m x 2 EX X (x)..... (r) X (x)Y (y)Z(z) YZEX X XZEyY XYEZ Z EXYZ a a 2 X (x) 1 kX k 2mE h x 2 X A e B e ik x ik x Boundary Conditions : at x y z a : X Y Z 0 2 2 2i X cos k x X sin k x k , 1,3,5.. k , 0,2,4... 2a 2a a a h2 2 1 h EX k 2 2m 2m a 2 1 h 2 h E ( ) 2 2 2 p2 2mE ( ) 2 2 2 2m a x y z a x y z 3 a3 p3
8
a2 a3 33 3 h 2m v d 42 1 2 a a
We count how many states we have in a spherical volume of radius between and 2 2 2 2 d 42 x y z 1 2 a a dn d 8 2 p d dp h h Momentum volume a2 a3 2 a h 2 h 4p dpv 2 dn p 2 2h2 dp p dp 2 Space volume Phase-space occupied by one state 2 3 (2h)3 p2 2mE p2dp 3 2m3 E dE dn m 2 ( 2 2h3 )1v dE E C E dE 1 Number of spin 1/2 particles which sit in the well: EF n 2 dE 2C v dn EF 3 2 E = maximal energy of the E dE ( 8m )(3 h ) vE 2 3 2 3 1 F dE 1 F particle in the well dn/dE E 1 2 4 2/ 3 2 n EF 33 3 h 30MeV 2m v in Cu atoms : n 6 1023 9 8 1022 cm3 E v 64 7eV F E F
9
Hierarchy of energy eigenstates of the harmonic oscillator potential
N = 2(n-1) + l E = h(N + 3/2)
10
Shell Model Potential Skin thickness
11
Spin Orbit Coupling h2 (l 1) /2 V (r) V (r) V (r) ls
It changes the hierarchy of the energy levels: V (r) V (r) V (r) ls h2 central ls ls 1 l /2 j l 1/2 Moving below Moving above ( j( j 1) l(l 1) s(s 1)) h 2 2 (l 1) /2 j l 1/2 E 2(l 1) V (r) ls ls 2 The energy levels transform into nlj levels.
12
Saxon-Wood Potential Shell model 2 2(2l+1) Spin-orbit coupling
1h 2d 92 3s 10 58 1g 18 2p 6 40 1f 14 2s 1d 2 10 1p Spin-orbit coupling 6 1s 2 Single particle level calculated in the shell model.
13
Single-Particle-Spectrum of the Wood-Saxon Potential for a heavy nucleus
14
Energy of first excited nuclear level in gg-nuclei
15
Energy levels of some nuclei
16O 40Ca 8 20 48Ca 208Pb 4 He 2 20 82 Excitation Energy
16
nucl N (gl li gs si )/ h
Nuclear Magnetic Moments in Shell Model A nucl N (gl li gs si )/ h i1 1 for p 5.58 for p g g l 0 for n A s 3.83 for n nucl N nucl gl li gs si nucl / h i1 Wigner-Eckart Theorem: The expectation value of any vector operator of a system is equal to the projection onto ist angular momentum J h A gnucl i1 JMJ gl li gs si JMJ nucl gnuclN JM J 2 JM J J In the case of a single nucleon in addition to the close shell the angular momentum of the closed shell nuclei couples to 0. The nuclear magnetic Momentum of is equal to the nuclear magnetic mom. of the valence nucleon. g gl ( j( j 1) l(l 1) s(s 1)) gs( j( j 1) s(s 1) l(l 1)) nucl 2 j( j 1) nucl g gs gl J l 1/2 nucl J gl N 2l 1
17
Magnetic moments: Shell model calculations and experimental values
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.