Download presentation
Presentation is loading. Please wait.
1
Spatial Econometric Analysis Using GAUSS
3 Kuan-Pin Lin Portland State University
2
Spatial Weights Matrix
Anselin (1988) [anselin.1] Ertur and Kosh (2007) [ek.1] China 30 Provinces [china.1, china.2] Homework U.S. 48 Lower States [us48_w.txt] U.S Counties [us3109_w.zip] [us3109_wlist.txt]
3
Spatial Contiguity Weights Matrix Anselin (1988): W1, W2, W3
use gpe2; n=49; load wd[n,n]=c:\course10\ec596\SEAUG\data\anselin\anselin_w.txt; w1=spw(wd); w2=spwpower(w1,2); w3=spwpower(w1,3); w4=spwpower(w1,4); w5=spwpower(w1,5); w6=spwpower(w1,6); call spwplot(w1); end; #include gpe\spatial.gpe;
4
Spatial Contiguity Weights Matrix China, 30 Provinces and Cities: W1, W2, W3
5
Distance-Based Spatial Weights Ertur and Kosh (2007)
proc gcd(xc,yc); local x,y,d; x=pi*xc/180; @ convert to y=pi*yc/180; d=3963*arccos(sin(y').*sin(y)+cos(y').*cos(y).*cos(abs(x'-x))); @ 3963 miles or 6378 km = radius of the retp(real(d)); endp; Geographical Location (x,y) Longitude (x) Latitude (y) Great Circle Distance d=gcd(x,y) (x,y) is in degree decimal units Distance-Based Spatial Weights Matrix Using Kernel Weight Function
6
Distance-Based Spatial Weights Ertur and Kosh (2007)
Kernel Weight Function Parzen Kernel Bartlett Kernel (Tricubic Kernel) Turkey-Hanning Kernel Guassian or Exponenetial Kernel
7
Kernel Weights Spatial Matrix An Example
Negative Exponential Distance Negative Gaussian Distance
8
Gaussian Distance Weights Matrix Ertur and Kosh (2007)
9
Spatial HAC Estimator The Classical Model
10
Spatial HAC Estimator General Heteroscedasticity
Huber-White Estimator
11
Spatial HAC Estimator General Heteroscedasticity and Autocorrelation
First Law of Geography Kelejian and Prucha (2007)
12
Time Series HAC Estimator General Heteroscedasticity and Autocorrelation
Newey-West Estimator
13
Crime Equation Anselin (1988) [anselin.2]
Basic Model (Crime Rate) = a + b (Family Income) + g (Housing Value) + e Spatial HAC Estimator OLS Parameter s.e. Robust s.e/hc s.e/hac b g a 68.619 4.7355 4.1014 5.3639 R2 0.5520
14
GDP Output Production China 2006 [china.3]
Cobb-Douglass Production Function ln(GDP) = a + b ln(L) + g ln(K) + e Spatial HAC Estimator OLS Parameter s.e. Robust s.e/hc s.e/hac b g a R2
15
Spatial Exogeneity Lagged Explanatory Variables
Spatial Exogenous Model
16
GDP Output Production China 2006 [china.4]
Cobb-Douglass Production Function ln(GDP) = a + b ln(L) + g ln(K) + bw W ln(L) + gw W ln(K) + e OLS Parameter s.e. Robust s.e/hc s.e/hac b g bw gw a R2
17
Spatial Endogeneity Lagged Dependent Variable
Spatial Lag Model
18
References T. Conley, 1999 “GMM estimation with cross sectional dependence,” Journal of Econometrics 92, 1999, 1–45. H. Kelejian and I.R. Prucha, “HAC Estimation in a Spatial Framework,” Journal of Econometrics 140, 2007, W. Newey, and K. West, 1987, “A simple, positive semi-definite, heteroskedastic and autocorrelated consistent covariance matrix,” Econometrica, 55, 1987, 703–708. H. White, “Maximum Likelihood Estimation of Misspecified Models,” Econometrica, 50, 1982, 1-26.
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.