Download presentation
Presentation is loading. Please wait.
Published byRoy Scott Modified over 5 years ago
1
Today, we learn some tools derived from the 3 basic laws:
Equivalent resistance Voltage division Current division They help you develop intuition about circuits: To see relationship between variables To see several steps ahead To plan a solution to a circuit Two terminal circuit with all resistors + π£ β π π
ππ + π£ β π Behaves like a single resistor π
ππ β π£ π
2
By KCL, same current flows through elements in series
Ways of connection Series connection: Two or more elements are in series if every connected pair exclusively share a single node, i.e., one node connects only two elements. i1 i2 i3 i1= i2= i3 By KCL, same current flows through elements in series R1 and R2 are not in series because the node connecting them also connects a third element. R1 R2 Parallel connection: Two or more elements are in parallel if they are connected between the same two nodes. Node 1 Node 2 By KVL, same voltage across parallel elements: v1=v2=v3
3
π Determine series and parallel connection: R2 and R3 are in parallel,
How about π
1 πππ π
2 ? R1 and R2 are not in parallel. π
1 is between βaβ and βcβ, π
2 between βbβ and βdβ Any series connection? R1 R2 R3 R4 R5 + π£ β π π π π
1 πππ π
5 are not in series π
1 πππ π
4 are not in series π π No series connection between any two elements. These wires cannot be thrown away. They must be connected to somewhere to draw power
4
Which pair of resistors are in series? Which pair in parallel?
Node 1 Node 4 10Ξ© πππ 5Ξ©? Not parallel, Not series 9ο 5ο 10ο 18ο 30V πΌπ + - 4ο 4Ξ© πππ 9Ξ©? Not parallel, Not series 4Ξ© πππ 5Ξ©? In Series β π£ 9 + 9Ξ© πππ 18Ξ©? In parallel Node 2 How many nodes in the circuit? + π£ 18 β Only 4 nodes 9ο 5ο 10ο 18ο 30V πΌπ + - 4ο Node 3 π£ 9 = π£ 18
5
Β§ 2.5 Series resistors and voltage division
Given R1, R2. What is π£/π ? By KCL, same current in R1,R2 By Ohmβs law, π£1=π
1π, π£2=π
2π By KVL, π£ = π£1+π£2. Putting together: π£ =π£1+π£2=π
1π+π
2π=(π
1+π
2)π ο π£ = (π
1+π
2)π (1) π
ππ π£ = π
πππ (2) π
ππ =? Compare (1) and (2): π£ π
ππ=π
1+π
2
6
If Req=R1+R2+β¦.+RN, same vοΎ i relationship.
In general: R1 R2 RN Rk Req If Req=R1+R2+β¦.+RN, same vοΎ i relationship. Req is called the equivalent resistance. Req=R1+R2+β¦.+RN
7
Voltage division R1 R2 Rk RN
Voltage division: Total voltage v is divided among the resistors in direct proportion to the resistances. Larger resistance takes more voltage. Special case with two resistors: R1 R2 R1 R2
8
Β§ 2.6 parallel resistors and current division
What is π
ππ =π£/π ? By KVL, same voltage across π
1, π
2 By ohmβs law: π1=π£/π
1, π2=π£/π
2 By KCL: π=π1+π2 Req Put together: π
ππ =?
9
L5 In general R1 R2 β¦.. RN Req
10
Equivalent resistance for parallel resistors:
Notation: Special cases: N=2: R1=R2=β¦=RN=R: Simple combinations: Simple rule: 3//6= 12//6= 15//10= 20//5= 2 πΌ π
1 //πΌ π
2 = πΌ π
1 ΓπΌ π
2 πΌ π
1 +πΌ π
2 = πΌ π
2 π
2 π
1 + π
2 =πΌ (π
1 // π
2 ) 4 6 4 27//54= 9(3//6) =9Γ2=18
11
Adding more resistor to existing parallel ones reduces Req:
Common sense: Adding more resistor to existing parallel ones reduces Req: Equivalent resistance for parallel connection is less than any individual resistance Equivalent conductance:
12
Current division: Given total π, what is π1,π2 ? Req
The other resistance on top The current is shared by resistors in inverse proportion to resistance. Larger resistor takes less current.
13
Case 1: A resistor in parallel with a short circuit
Two extreme cases: Case 1: A resistor in parallel with a short circuit R1 R2=0 Case 2: A resistor in parallel with an open circuit R1 R2=β
14
Equivalent resistance Examples
4ο 2ο 1ο 5ο 3ο 6ο 8ο Req 6ο 2ο 4ο 2ο 6ο 8ο Req 4ο 2.4ο 8ο Req Req= =14.4β¦
15
Equivalent resistance Examples
10ο 3 1 5 4 12 Req 6 10ο 3 1 5 4 12 Req 6 1 10ο 2 6 3 Req 10ο 2 Req 1 Req=10+2//(1+2) =10+2//3 =10+1.2 =11.2β¦
16
Need to find the equivalent resistance with respect to 40V
30β¦ 18β¦ 8β¦ 9β¦ 14β¦ 50β¦ 40V 20β¦ + β πΌ π Example: Compute πΌ π π
ππ1 = 30//(20+50) = 30//70 = 21Ξ© π
ππ1 π
ππ2 = 14+9//18 = = 20Ξ© π
ππ2 Need to find the equivalent resistance with respect to 40V 21β¦ 8β¦ 20β¦ 40V 9β¦ + β πΌ π π
ππ π
ππ =8+20//(21+9) = 8+12 =20Ξ© πΌ π = =2π΄
17
Example: Compute π
ππ π
ππ = 10// (12+4//12) = 10 // 15 =6 Ξ© 12β¦ 10β¦
Req 12β¦ 4β¦ 10β¦ 12β¦ 10β¦ 4β¦ Req 12β¦ 10β¦ 12β¦ 4β¦ π
ππ = 10// (12+4//12) = 10 // 15 =6 Ξ© Req
18
Practice 6: Find π
ππ Req Req Practice 7: Find πΌ π πΌπ 4ο 10ο 5ο + -
3ο 20ο 4ο 4ο 5ο 15ο Req 15ο Req 18ο 9ο 6ο 8ο 9ο 5ο 10ο 18ο 30V πΌπ + - 4ο Practice 7: Find πΌ π
19
Practice 8: Find π£π Practice 8: Find π£π 15ο 10ο 15ο 10ο 14ο 30ο 2A 14ο
3ο 30ο Practice 8: Find π£π 14ο 10ο 15ο 2A 15ο 10ο 14ο 30ο 2A 3ο Practice 9: Find π£ 1 , π£ 2 Practice 10: Find π 1 , π 2 + π£ 1 β + π£ 2 β π 1 4ο 4ο 6ο 4ο 2ο 3π΄ 15V + - π 2
20
Three useful tools derived from basic laws:
Equivalent resistance Voltage division Current division Used together to solve circuit problems R1 R2 Voltage division: R1 R2 R1 R2 Current Division: π π
1 π
2
21
Approach 1: Assign auxiliary variable πΌ.
4ο 6ο 3ο Example: Find i0 and v1. Approach 1: Assign auxiliary variable πΌ. Use equivalent resistance with respect to 12V to find I, then v1=4I, and i0 can be computed by current division. Req= 4 + 6//3 =4+2=6ο By Ohmβs Law, I=12/Req=12/6=2A Thus v1= 4I=8V. Req By current division: Be Careful: In this equivalent circuit, only I is the same as in the original circuit. Neither v1 nor i0, can be found in it. You need to go back to the original circuit to find v1 and i0.
22
Approach 2: Use equivalent resistance of 6//3, denoted as Rβeq.
4ο 6ο 3ο a b Approach 2: Use equivalent resistance of 6//3, denoted as Rβeq. 4ο Rβeq Rβeq=3//6=2ο. By voltage division, a Be careful, i0 cannot be found in the equivalent circuit. i0β I. You have to use the original circuit to find i0. b Where is π£ 2 in the original circuit? Since the voltage across 3ο is v2, by Ohmβs Law, i0=v2/3=4/3A
23
Approach 1: Which is the voltage across 3A ?
Example: Find v1, v2, 4ο 15ο 8ο 10ο 3A 3A π
1 π
2 4+8= =15//10 3A π
1 π
2 Approach 1: Which is the voltage across 3A ? π£ 1 ππ π£ 2 ? It is π£ If you know the Req w.r.t 3A, you can obtain π£ 2 by ohmβs law. π
ππ = π
1 // π
2 π£ 2 = π
ππ Γ3 =4Γ3=12V 3A π
ππ = (4+8)//15//10 How to find π£ 1 ? π
ππ Need the original circuit. = 12//6 By voltage division, = 4Ξ© π£ 1 = Γ π£ 2 = 4 12 Γ12=4π
24
Be careful, you cannot find π£ 1 in the simplified circuit.
πΌ 1 πΌ 2 Be careful, you cannot find π£ 1 in the simplified circuit. Have to use the original circuit to find π£ 1 4ο 15ο 8ο 10ο 3A Approach 2: Use current division. Assign πΌ 1 , πΌ 2 . π
1 =4+8=12Ξ© 3A π
1 π
2 πΌ 1 πΌ 2 π
2 =15//10=6Ξ© + π£ 2 β By current division, πΌ 1 = π
2 π
1 + π
2 Γ3= 6 18 Γ3=1π΄ πΌ 2 = π
1 π
1 + π
2 Γ3= Γ3=2π΄ By ohmβs law, π£ 1 =4 πΌ 1 =4π; π£ 2 = π
2 πΌ 2 =6Γ2=12π.
25
Outline of the solution:
Example: Find πΌ π , πΌ 1 , π£ ππ πΌ 1 8ο πΌ 2 25ο πΌ π + π£ 1 β β π£ 2 + 15ο 3ο a + π£ ππ β b 10ο 20ο + - 25ο 27V 15ο 12ο Outline of the solution: Find πΌ π first, then use current division to find πΌ 1 . To find π£ ππ , need to find π£ 1 , π£ 2 , then use KVL π£ 2 + π£ ππ + π£ 1 =0β π£ ππ = βπ£ 2 β π£ 1 To find π£ 1 , need the current through 15Ξ©. Assign πΌ 2 , πΌ 2 can be computed by current division on πΌ 1
26
Type equation here.Type equation here.
Step 1: Compute I s Type equation here.Type equation here. πΌ 1 8ο π
ππ1 25ο πΌ π 15ο π
ππ2 3ο 10ο 20ο + - π
ππ1 =10+8=18Ξ© 25ο 27V 15ο 12ο π
ππ2 =12+(15+25)\\( ) =12+40\\ 60 =12+24=36Ξ© π
ππ1 3ο 27V + - πΌ π πΌ 1 π
ππ2 π
ππ w.r.t. 27V: π
ππ =3+ π
ππ1 \\ π
ππ2 = \\18 =3+6 6\\3 =3+6Γ2=15Ξ© πΌ π = 27 π
ππ = =1.8π΄ π
ππ1 π
ππ1 + π
ππ2 Γ πΌ π Step 2: By current division: πΌ 1 = = Γ1.8=0.6π΄
27
Step 3: Go back to the original circuit to find π£ ππ :
πΌ 1 8ο 25ο πΌ 2 + π£ 1 β πΌ π β π£ 2 + 15ο 3ο a + π£ ππ β b 10ο 20ο πΌ π =1.8π΄; πΌ 1 =0.6π΄ + - 25ο 27V 15ο 12ο πΌ 1 is divided by 15Ξ©+25Ξ©=40Ξ© and 25Ξ©+20Ξ©+15Ξ©=60Ξ© πΌ 2 = Γ0.6=0.36π΄ π£ 1 =15 πΌ 2 =15Γ0.36=5.4π π£ 2 =3 πΌ π =3Γ1.8=5.4π v ab + v 1 + v 2 =0 π£ ππ =β π£ 1 β π£ 2 =β5.4β5.4=β10.8π
28
Example: Find π£ 0 and the power absorbed by the dependent current source.
+ - π―πππ: ππ π πΎπΆπΏ π‘π ππππ ππ πππ’ππ‘πππ πππ π£ 0 2ο 4.5V 3ο + π£ 0 β 1.8A 2ο 0.2 π£ 0 4ο 5ο Solution: Assign current πΌ 1 2ο 3ο 4ο 0.2 π£ 0 1.8A + - 4.5V + π£ 0 β 5ο πΌ 1 π πΌ 1 is the same current through 2Ξ© By Ohmβs Law, πΌ 1 = π£ 0 2 =0.5 π£ 0 KCL at node π: π£ 0 = πΌ 1 =0.5 π£ 0 β 1.8=0.3 π£ 0 β π£ 0 =6π
29
πΌ 1 Wπ βππ£π : π£ 0 =6π Power absorbed by the dependent current source?
π + - β π£ 3 + 2ο 4.5V πΌ 1 3ο Need voltage across 0.2 π£ 0 + π£ 0 β β π£ π + 1.8A 2ο 0.2 π£ 0 Assign π£ π β π£ 4 + To apply KVL correctly, Assign π£ 3 , π£ 4 5ο 4ο KVL around right side loop: π£ 3 =? π£ 3 =3Γ0.2 π£ 0 π£ π + π£ π£ 0 + π£ 4 =0 =3Γ0.2Γ6=3.6π π£ π =β π£ 3 β4.5 β π£ 0 β π£ 4 πΌ 1 = π£ 0 2 = 6 2 =3π΄ π£ 4 =? π£ 4 =4 πΌ 1 , =β3.6β4.5β6β12 =β26.1π π£ 4 =4Γ3=12π π 0.2 π£ 0 = v s Γ0.2 π£ 0 =β26.1Γ0.2Γ6 =β31.32π
30
Variations of the circuit + -
2ο 4.5V 3ο + π£ 0 β 2ο 3ο 4ο 0.2 π£ 0 1.8A + - 4.5V + π£ 0 β 5ο 1.8A 2ο 0.2 π£ 0 4ο 5ο 2ο 99V 0.8 π£ 0 1.8A + π£ 0 β 5ο + - + - 15V 7ο πΌ 1 πΌ 2 Same idea! Express Branch current πΌ 1 , πΌ 2 In terms of π£ 0 , Then apply KCL πΌπ power by a current source is needed, compute its voltage by using KVL
31
More current division: πΌ 3 = 10 10+15 Γ πΌ 1 =1.08π΄
Example: Find v1 and v2. Alternatively: 12ο Ohms Law: π£ π₯ =6 πΌ 1 =16.2π 2ο 8ο Voltage division: + π£ 1 β + π£ 2 β π£ 1 = Γ π£ π₯ =9.72V 8ο 9ο 10ο 5ο 4.5A 6ο More current division: πΌ 3 = Γ πΌ 1 =1.08π΄ 9ο 8ο 2ο 4.5A 6ο 10ο 12ο 5ο + π£ 1 β + π£ 2 β πΌ 1 πΌ 2 πΌ 3 πΌ 4 π£ 1 =9 πΌ 3 =9.72π + π£ π₯ β πΌ 4 = Γ πΌ 2 =0.36π΄ π£ 2 =8 πΌ 4 =2.88π π
ππ2 π
ππ1 4.5A πΌ 1 πΌ 2 π
ππ1 π
ππ2 Current division: πΌ 1 = Γ4.5=2.7π΄ 8ο = = 12ο πΌ 2 = Γ4.5=1.8π΄
32
Example: Find the currents i1, β¦, i5
+ - 18V 4ο 3ο 18ο 9ο i3 i1 i2 i5 i4 Approach1: Use equivalence resistance and current division. Req π 1 π
ππ =4+3//9//18=6β¦ π 1 = 18 6 =3π΄ + - 18V 4ο 3ο 6ο i3 i1 i2 π 2 = Γ π 1 = 6 9 Γ3=2π΄ π 3 = Γ π 1 = 3 9 Γ3=1π΄ π 4 = Γ π 3 = Γ1= 2 3 π΄ π 5 = Γ π 3 = 9 27 Γ1= 1 3 π΄
33
Example: Find the currents i1, β¦, i5
+ - 18V 4ο 3ο 18ο 9ο i3 i1 i2 i5 i4 Approach2: Use voltage division and Ohmβs law . Assign π£ 2 . By voltage division π£ 2 = Γ18=6π + - 18V 4ο i1 By Ohmβs law, π 1 = π£ 2 2 = 6 2 =3π΄ π 2 = π£ 2 3 = 6 3 =2π΄ 3//9//18=2ο π 5 = π£ = 6 18 = 1 3 π΄ π 4 = π£ 2 9 = 6 9 = 2 3 π΄ π 3 = π 4 + π 5 = =1π΄
34
In all three circuits, π 1 , π 2 , π 3 , π 4 are the same
Example: Find π 1 , π 2 , π 3 , π 4 , πΌ π₯ 20ο 10ο 30ο 3A π 1 π 2 π 4 π 3 π 2 π 1 10ο 20ο extend 3A Shrink to one point πΌπ₯ 20ο 30ο π 3 π 4 20ο 10ο 30ο 3A π 1 π 2 π 4 π 3 πΌ 0 In all three circuits, π 1 , π 2 , π 3 , π 4 are the same How about πΌ π₯ , πΌ 0 ? By KCL, πΌ 0 = π 1 + π 2 =? πΌ 0 = π 1 + π 2 = π 3 + π 4 =3π΄ πΌ π₯ = π 1 β π 3 = π 4 β π 2 By current division: π 1 = Γ3=2π΄; π 2 =1π΄; π 3 =1.8π΄; π 4 =1.2π΄; πΌ π₯ = π 1 β π 3 =0.2π΄ πΌ π₯ = π 4 β π 2 =0.2π΄
35
Test 1 will be given on Sept 30 (Monday), 11-11:50am
Test 1 will be given on Sept 30 (Monday), :50am. In Ball Hall 210 There will be two versions in different colors. Please arrive 5-10 minutes earlier A practice exam will be given on 9/25/2019(Wednesday), 11-11:50am in Ball Hall 210 Solution to practice exams will be posted at website Solution to all practice problems in lecture note will be posted.
36
R6 30V 4ο 6ο 3ο 15ο + - + π£ 4 β πΌ 1 πΌ 2 Practice 12: Find πΌ 1 , πΌ 2 , π£ 4 Practice 13: Find πΌ 0 , π£ 4 πΌ 0 5ο 8ο 6ο 12ο 4ο 3.5A
37
R6 Practice 14: Find πΌ 0 , π£ 2 6ο 6ο πΌ 0 20π + - 6ο 10ο 15ο
38
Practice 15: Find the voltage π£π₯
+ - 30V 12ο 6ο 18ο 30V 10ο Practice 16: Find π£0, πΌ π₯ , 6ο 15ο 12ο 4ο πΌ π₯ + -
39
R6 Practice 16a: Find v1, I0, 9ο 5ο 20ο 18ο 5A 15ο I0
40
R7 Practice 17: Find π£ π₯ , πΌ, 14ο 6ο 15ο 24ο + - π£ π₯ β 36V 16ο 12ο πΌ
41
8ο 4ο 3ο 3A 8ο 24V + - 4ο 3ο R7 Practice 18: Find i0 i0
42
Practice 20: Find R for the circuit
6ο R 20V + - 30V 4ο 6ο π π + - 4ο Practice 21: Find Vs for the circuit 10ο 9ο I1=2A
43
Practice 22: Find R so that πΌ π is 10A
10ο Is=10A 4ο + - 8/3ο 64π R
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.