Presentation is loading. Please wait.

Presentation is loading. Please wait.

Quasilinear Time List-Decodable Codes for Space Bounded Channels

Similar presentations


Presentation on theme: "Quasilinear Time List-Decodable Codes for Space Bounded Channels"โ€” Presentation transcript:

1 Quasilinear Time List-Decodable Codes for Space Bounded Channels
Swastik Kopparty Rutgers University and IAS Ronen Shaltiel University of Haifa Jad Silbak Tel-Aviv University

2 Binary List Decodable Codes
Short list Channel Zโ€™=C(Z) Induces โ‰คpn errors ๐‘š 1 ๐‘š 2 ๐‘=๐ธ๐‘›๐‘(๐‘š) ๐ท๐‘’๐‘(๐‘โ€ฒ) ๐‘š โ‹ฎ ๐‘…= ๐‘š ๐‘ง = ๐‘˜ ๐‘› ๐‘š ๐ฟ Unique decoding if L=1 โˆƒ ๐‘–:๐‘š= ๐‘š ๐‘– Hamming channels: Can change any ๐‘๐‘› bits in ๐ธ๐‘›๐‘ ๐‘š . The channel is an adversary that depends on ๐ธ๐‘›๐‘ ๐‘š . Donโ€™t have explicit construction with optimal rate Rโ‰ˆ1โˆ’H p . Goal: Construct explicit binary list decodable codes with optimal rate Rโ‰ˆ1โˆ’H p . Existentially: Enc:{0,1} Rn โ†’ {0,1} n is a ๐ฟ,๐‘ -List decodable Rโ‰ˆ1โˆ’H p . Can we get an explicit code? Major open problem.

3 Binary List Decodable Codes
What about intermediate channel families? Short list Channel Zโ€™=C(Z) Induces โ‰คpn errors ๐‘š 1 ๐‘š 2 ๐‘=๐ธ๐‘›๐‘(๐‘š) ๐ท๐‘’๐‘(๐‘โ€ฒ) ๐‘š โ‹ฎ ๐‘…= ๐‘š ๐‘ง = ๐‘˜ ๐‘› ๐‘š ๐ฟ Unique decoding if L=1 โˆƒ ๐‘–:๐‘š= ๐‘š ๐‘– Hamming channels: Can change any ๐‘๐‘› bits in ๐ธ๐‘›๐‘ ๐‘š . The channel is an adversary that depends on ๐ธ๐‘›๐‘ ๐‘š . Donโ€™t have explicit construction with optimal rate Rโ‰ˆ1โˆ’H p . Shannon channels ( ๐ต๐‘†๐ถ ๐‘ ): every bit in the codeword is independently flipped with probability ๐‘. The channel does not look at Enc(m). Explicit (linear time) codes with optimal rate Rโ‰ˆ1โˆ’H p .

4 Intermediate Channels Between Hamming and Shannon
We want an adversarial channel that is not all powerful โ€œAll Hamming channels that are computationally boundedโ€ Lipton [Lip94]: Considered families of bounded channels Induce at most ๐‘๐‘› errors (๐ท๐‘–๐‘ ๐‘ก ๐‘,๐ถ ๐‘ โ‰ค๐‘๐‘›). Are computationally bounded. This work: We consider codes safe against small online space channels that induce at most ๐‘๐‘› errors.

5 Intermediate Channels Between Hamming and Shannon
This work: We consider codes safe against small online space channels that induce at most ๐‘๐‘› errors. Online space ๐‘  channels: Reads the input (codeword) in one pass using space ๐‘ . Space ๐‘  channel ๐ถ, has an internal state q of ๐‘  bits. On input ๐‘ฅ, ๐ถ(๐‘ฅ) is computed iteratively, At step ๐‘–, ๐ถ reads ๐‘ฅ ๐‘– and uses โ€œtransition functionโ€ ๐›ฟ ๐‘– : 0, 1 ๐‘  ร—{0, 1}โ†’ 0, 1 ๐‘  ร— {0, 1} to update its โ€œinternal stateโ€, and output a bit ๐ถ ๐‘ฅ ๐‘– .

6 Intermediate Channels Between Hamming and Shannon
This work: We consider codes safe against small online space channels that induce at most ๐‘๐‘› errors. List-decodable against space ๐‘ =0 (nonuniform) channels List-decodable against Hamming channel ๐‘ข๐‘›๐‘“๐‘œ๐‘Ÿ๐‘ก๐‘ข๐‘›๐‘Ž๐‘ก๐‘’๐‘™๐‘ฆ If โˆƒbad mโ€™: ๐ธ๐‘›๐‘ ๐‘šโ€ฒ =๐‘งโ€ฒ ๐ถ ๐‘งโ€ฒ =๐‘ฆ Solution: Stochastic codes Encoding is randomized Decoding succeeds only with high probability. Define: ๐ถ ๐‘ง =๐‘งโŠ•๐‘งโ€ฒโŠ•๐‘ฆ 0-space. ๐ถ ๐‘ง โ€ฒ =๐‘ฆ ๐‘๐‘› ๐‘ฆ ๐‘งโ€ฒ

7 Guruswami and Smith [GS16] Stochastic Codes
๐‘… is uniformly chosen ๐ถ and D๐‘’๐‘ do not receive ๐‘… ๐ถ is chosen from a family of online space ๐‘  channels ๐ถ(๐‘)=๐‘โ€™ ๐‘š 1 ๐‘š 2 ๐‘=๐ธ๐‘›๐‘(๐‘š,๐‘น) ๐ท๐‘’๐‘(๐‘โ€ฒ) ๐‘š โ‹ฎ ๐‘š ๐ฟ Induce at most ๐‘๐‘› errors ๐‘…= ๐‘š ๐‘ง = ๐‘˜ ๐‘› Pr ๐‘… [โˆƒ๐‘–:๐‘š= ๐‘š ๐‘– ]โ‰ฅ1 โˆ’ ๐œˆ Def: ๐ธ๐‘›๐‘:{0,1} ๐‘˜ ร— {0,1} ๐‘‘ โ†’ {0,1} ๐‘› is a stochastic code for the class of online space ๐‘  channels ฤ†, if โˆƒ๐ท๐‘’๐‘: 0,1 ๐‘› โ†’ ( 0,1 ๐‘˜ ) L s.t. โˆ€๐‘šโˆˆ 0,1 ๐‘˜ , โˆ€๐ถโˆˆฤ†, Pr ๐‘… [๐ท๐‘’๐‘ ๐ถ ๐ธ๐‘›๐‘ ๐‘š,๐‘น โˆ‹๐‘š] โ‰ฅ 1 โˆ’ ๐œˆ A code is explicit if (๐ธ๐‘›๐‘,๐ท๐‘’๐‘) are polynomial.

8 Previous Results: Binary Stochastic List-Decodable Codes for Online Space
Guruswami and Smith [GS16]: Explicit stochastic codes with rate approaching ๐‘…โ‰ˆ1โˆ’๐ป ๐‘ , for additive channels (think space ๐‘ =0). (Unique decoding). For every constant ๐‘, exists a Monte-Carlo explicit construction of list-decodable stochastic codes against space ๐‘ =๐‘โ‹…๐‘™๐‘œ๐‘”(๐‘›) with ๐‘…โ‰ˆ1โˆ’๐ป ๐‘ . Preprocessing stage: (Enc,Dec) toss a shared randomness of poly length that is used for Encoding/Decoding (and is revealed to the channel)

9 Previous Results: Binary Stochastic List-Decodable Codes for Online Space
Guruswami and Smith [GS16]: Explicit stochastic codes with rate approaching ๐‘…โ‰ˆ1โˆ’๐ป ๐‘ , for additive channels (think space ๐‘ =0). (Unique decoding). For every constant ๐‘, exists a Monte-Carlo explicit construction of list-decodable stochastic codes against space ๐‘ =๐‘โ‹…๐‘™๐‘œ๐‘”(๐‘›) with ๐‘…โ‰ˆ1โˆ’๐ป ๐‘ . Shaltiel and Silbak [SS16]: Explicit (not Monte-Carlo) list-decodable stochastic codes against space ๐‘ =๐‘โ‹…๐‘™๐‘œ๐‘”(๐‘›) with ๐‘…โ‰ˆ1โˆ’๐ป ๐‘ . A major weakness of these results is that Enc/Dec runtime is some unspecified polynomial that is at least 2 ๐‘  = ๐‘› ๐‘ .

10 List-Decodable Codes for Larger Space
This work (main results): Explicit list-decodable stochastic codes with rate ๐‘…โ‰ˆ1โˆ’๐ป ๐‘ , ๐œˆ= 2 โˆ’๐‘๐‘œ๐‘™๐‘ฆ๐‘™๐‘œ๐‘”(๐‘›) = ๐‘› โˆ’๐œ”(1) . For any-order space ๐‘ = ๐‘› ฮฉ 1 โ‰ซlogโก(๐‘›) channels, with encoding and decoding running in nโ‹…polylog(n) time. )Holds for any 0โ‰ค๐‘< 1 2 (. For any-order space ๐‘ =๐‘›/polylog ๐‘› channels, with encoding and decoding running in a fixed polytime independent of ๐‘  (holds for ๐‘โ‰ค ๐‘ 0 , ๐‘ 0 is say 1/100). (we have space ๐‘‚(๐‘™๐‘œ๐‘”๐‘›) and are allowed to read the input in one pass). โ€œEssentiallyโ€ all randomized channels studied in info-theory (e.g. BSC, Burst,โ€ฆ) are implementable in small space channels

11 Outline of construction
Component: Raw Reed-Solomon codes. Explicit linear (standard) codes with large distance, dual distance and explicit list-decoding from ยฝ errors. New point of view on good old Reed-Solomon codes. Gives: Pseudorandom โ€œcontrolโ€ codes. Stochastoc codes (against Hamming channels) with pseudorandom properties. Stochastic codes for space bounded channels. Use new pseudorandom codes in framework of [GS16,SS16] (with some additional ideas).

12 Component: Raw Reed-Solomon Codes
We will need a (standard) linear code which: Has explicit list-decoding from ( 1 2 โˆ’๐‘œ 1 ) errors Has Dual distance โ‰ฅ ๐‘› ฮฉ 1 . (implies ๐‘˜โ‰ฅ ๐‘› ฮฉ 1 ). Usual suspects: Dual-BCH Codes Have ( 1 2 โˆ’๐‘œ 1 ) distance. Are linear with with dual distance ๐‘› ฮฉ 1 . Unfortunately, we donโ€™t have explicit list-decoding algorithm. Reed-Solomon concatenated with an inner code Has explicit list-decoding Concatenation with nontrivial code destroys the dual distance. An inner component in our construction. We will see later why itโ€™s useful

13 Raw Reed-Solomon Codes
We will need a (standard) linear code which: Has explicit list-decoding from ( 1 2 โˆ’๐‘œ 1 ) errors Has Dual distance โ‰ฅ ๐‘› ฮฉ 1 . (implies ๐‘˜โ‰ฅ ๐‘› ฮฉ 1 ). We show: Good old Reed-Solomon(RS), seen as binary works! Let n be a power of 2. RS: F n k โ†’ F n n , seen as a binary RS Raw : F 2 kโ‹…log n โ†’ F 2 nโ‹…log ๐‘› For kโ‰ช ๐‘› (say ๐‘› 0.49 ), RS Raw has both properties. We call such codes Raw Reed-Solomon ( RS Raw ) codes. Note: The โ€œnormalโ€ argument gives distance of 1 log ๐‘› . This gives rate ๐‘…=๐‘œ 1 . We can tolerate the rate since RS Raw is an inner component that encodes little information.

14 Raw Reed-Solomon Codes: Correlated Dual-BCH Codes
Standard interpretation: RS Raw =RSโˆ˜Identity m RS Id

15 Raw Reed-Solomon Codes: Correlated Dual-BCH Codes
Standard interpretation: RS Raw =RSโˆ˜Identity Bundles of Dual-BCH Codes: Each part is a dual-BCH codeword (that is non-zero) with relative weight ( 1 2 โˆ’๐‘œ 1 ) RS m Dual-BCH Id If we rearrange the bits such that the i ๐‘กโ„Ž bit in every symbol are put together. It turns out that every such part is a dual-BCH codeword!

16 Raw Reed-Solomon Codes: Correlated Dual-BCH Codes
Standard interpretation: RS Raw =RSโˆ˜Identity Bundles of Dual-BCH Codes: Each part is a dual-BCH codeword (that is non-zero) with relative weight ( 1 2 โˆ’๐‘œ 1 ) RS m Dual-BCH Id Distance: If all (most) parts are a Dual-BCH codewords โ‰ 0, then the overall distance is ( 1 2 โˆ’๐‘œ 1 ). Johnson bound => Nonexplicit list-decoding.

17 Raw Reed-Solomon Codes: Correlated Dual-BCH Codes
Standard interpretation: RS Raw =RSโˆ˜Identity Bundles of Dual-BCH Codes: Each part is a dual-BCH codeword (that is non-zero) with relative weight ( 1 2 โˆ’๐‘œ 1 ) RS m Id Explicit list-decoding: Inner code (identity): โ€œList decodingโ€ by brute force. Outer code: Explicit list-recovery (for RS) by [Sudan,GS]. By Johnson bound: Distance โˆ’๐œ– ๏ƒ  small poly(1/ฯต) size list

18 Raw Reed-Solomon Codes: Correlated Dual-BCH Codes
Standard interpretation: RS Raw =RSโˆ˜Identity Bundles of Dual-BCH Codes: Each part is a dual-BCH codeword (that is non-zero) with relative weight ( 1 2 โˆ’๐‘œ 1 ) RS m Id We get that RS Raw is a linear code that has: Dual distance of at least ๐‘› ฮฉ 1 (inherited from RS). Polynomial time encoding. Polynomial time list-decoding with a small list.

19 Stochastic Pseudorandom codes (inner component in [GS16,SS16])
Pseudorandom: โˆ€x, En c PR x,U fools family ฤ† of space s. โˆ€Cโˆˆฤ† , |Pr C(En c PR x,U =1]โˆ’Prโก[C U n =1]|<ฯต List-decoding: โˆ€x,โˆ€r, โˆ€e s.t. weight(e) โ‰คp , xโˆˆ Dec PR (En c PR x,r โŠ•e) Previous work [GS16,SS16]: Showed existence of En c PR . Find by brute force. This leads to small s=๐‘โ‹…log(๐‘›) and large runtime 2 ๐‘  = ๐‘› ๐‘ . [This work]: explicit construction + (more ideas) โ†’ Better space and time

20 Stochastic Pseudorandom (inner component in [GS16,SS16])
Lee and Viola [LV17], and Forbes and Kelly [FK18]: โ„“-wise independence + low weight noise๏ƒ  fool space Pseudorandom: โˆ€x, En c PR x,U fools family ฤ† of space s. โˆ€Cโˆˆฤ† , |Pr C(En c PR x,U =1]โˆ’Prโก[C U n =1]|<ฯต List-decoding: โˆ€x,โˆ€r, โˆ€e s.t. weight(e) โ‰คp , xโˆˆ Dec PR (En c PR x,r โŠ•e) Our approach: En c PR x,r = RS Raw rโˆ˜x โŠ• BSC o 1 Claim: En c PR is pseudorandom and list-decodable if, RS Raw is a Linear code with dual distance ๐‘› ฮฉ 1 . RS Raw has explicit list decoding from ( 1 2 โˆ’๐‘œ 1 ) errors. โ„“-wise independent Low weight noise

21 Stochastic Pseudorandom (inner component in [GS16,SS16])
Pseudorandom: โˆ€x, En c PR x,U fools family ฤ† of space s. โˆ€Cโˆˆฤ† , |Pr C(En c PR x,U =1]โˆ’Prโก[C U n =1]|<ฯต List-decoding: โˆ€x,โˆ€r, โˆ€e s.t. weight(e) โ‰คp , xโˆˆ Dec PR (En c PR x,r โŠ•e) Our approach: En c PR x,r = RS Raw rโˆ˜x โŠ• BSC o 1 Claim: En c PR is pseudorandom and list-decodable if, RS Raw is a Linear code with dual distance ๐‘› ฮฉ 1 . RS Raw has explicit list decoding from ( 1 2 โˆ’๐‘œ 1 ) errors. Codeword Low weight noise

22 Stochastic codes for space bounded channels: Outline
Use new pseudorandom codes in framework of [GS16,SS16] (with some additional ideas). Warmup: additive channels and shared randomness. Generalize to space bounded channels using our new pseudorandom code.

23 Warmup: codes for additive channels using shared private randomness
Channel โ€œadditiveโ€: ๐ถ ๐‘ง =๐‘งโŠ•๐‘’ for fixed pattern ๐‘’. Decoder receives the randomness chosen by encoder. Use randomness ๐‘† ๐œ‹ to select pseudorandom permutation. Additive channel becomes BSC channel! We have codes for BSC with ๐‘…โ‰ˆ1โˆ’โ„Ž(๐‘). 1 1 2 2 3 3 4 4 5 5 6 6 ๐‘† ๐œ‹ Code for BSC Enc โŠ• Message m Fixed error 1 But how do we send ๐‘† ๐œ‹ [GS]: randomly โ€œhideโ€œ ๐‘† ๐œ‹ in the code (using a sampler).

24 Codes against additive channels: (rough sketch)
Enc 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 Message Permutation generator S ๐œ‹ 11 6 11 10 6 ๐‘† ๐‘ ๐‘Ž๐‘š๐‘ 10 14 14 9 9 15 15 5 5 7 7 8 8 4 4 12 12 ๐‘† ๐œ‹ 2 3 2 3 13 1 13 1 Additive channels fix the error pattern in advance => Canโ€™t wipe out the control information. Sampler ๐‘† ๐‘ ๐‘Ž๐‘š๐‘ ๐‘† ๐œ‹ ๐‘† ๐‘ ๐‘Ž๐‘š๐‘ Need to worry how the decoder finds the control information. ๐‘† ๐‘ ๐‘Ž๐‘š๐‘ S ๐œ‹ Codes for BSC channels permuting & sampling Codes against additive channels

25 Codes against bounded channels: (rough sketch)
Enc 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 Message List decoding: Decode PR code on every block. For each candidate, decode message. Permutation generator PRG S ๐œ‹ ~ ~ โŠ• 11 6 10 14 9 ๐‘† ๐‘ ๐‘Ž๐‘š๐‘ 15 5 7 8 4 12 ๐‘† ๐œ‹ 2 3 13 1 What if the channel targets the control information? The channel can inspect the data and find weaknesses ๐‘† PRG GS10: Letโ€™s make the control info pseudorandom. Sampler Channel canโ€™t distinguish the data part from control part! ๐‘† PRG ๐‘† ๐‘ ๐‘Ž๐‘š๐‘ ๐‘† ๐‘ ๐‘Ž๐‘š๐‘ S ๐œ‹ ๐‘† PRG ๐‘๐‘ก๐‘Ÿ๐‘™= ๐ธ๐‘›๐‘ ๐‘ƒ๐‘… ( ๐‘† ๐‘ ๐‘Ž๐‘š๐‘ , ๐‘† ๐œ‹ , ๐‘† PRG ) Codes for BSC channels permuting & sampling Codes against additive channels pseudo randomness Codes against bounded channels

26 Conclusions and open problems
Conclusions (main results): List-decodable stochastic codes for space ๐‘  channels in time << 2 ๐‘  Quasilinear time encoding decoding for ๐‘ = ๐‘› ฮฉ 1 . Polynomial time encoding and decoding for ๐‘ = ๐‘› polylog ๐‘› . Open problems: What about unique decoding? [GS16]: impossible for ๐‘> 1 4 Subsequent work: explicit unique decoding for ๐‘< 1 8 with R=1โˆ’๐ป ๐‘ . For 1 8 โ‰ค๐‘< 1 4 still open! Can we get encoding and decoding in linear time? Our approach has runtime โ‰ฅnโ‹… log n built in. Thank you

27 Thatโ€™s itโ€ฆ

28 Stochastic codes for space bounded channels Ingredients:
Pseudorandom generator: ๐บ: 0,1 ๐‘Ÿ โ†’ 0,1 ๐‘› is a ๐œ–-PRG for class of functions ฤ† if โˆ€๐ถโˆˆฤ† , |Pr ๐ถ ๐บ( ๐‘ˆ ๐‘Ÿ =1]โˆ’Prโก[๐ถ ๐‘ˆ ๐‘› =1]|<๐œ– Intuition: functions in ฤ† cannot distinguish ๐บ ๐‘ˆ ๐‘Ÿ from ๐‘ˆ ๐‘› . Averaging Samplers: ๐‘†๐‘Ž๐‘š๐‘: 0,1 ๐‘› โ†’ ( 0,1 ๐‘š ) ๐‘ก is an ๐œ–,๐›ฟ -๐‘†๐‘Ž๐‘š๐‘๐‘™๐‘’๐‘Ÿ if for every f: 0,1 ๐‘š โ†’[0,1], Pr z 1 , z 2 ,โ€ฆ, z t โ†Samp U n ๐‘ก ๐‘–โˆˆ ๐‘ก ๐‘“ ๐‘ง ๐‘– โˆ’ 1 2 ๐‘š ๐‘ฅโˆˆ 0,1 ๐‘š ๐‘“ ๐‘ฅ >๐œ– โ‰ค๐›ฟ Intuition: samplers use few random bits and select a subset that has properties similar to uniform subset.


Download ppt "Quasilinear Time List-Decodable Codes for Space Bounded Channels"

Similar presentations


Ads by Google