Presentation is loading. Please wait.

Presentation is loading. Please wait.

Orthogonal Matrices & Symmetric Matrices

Similar presentations


Presentation on theme: "Orthogonal Matrices & Symmetric Matrices"โ€” Presentation transcript:

1 Orthogonal Matrices & Symmetric Matrices
Hung-yi Lee

2 Orthogonal Matrices Symmetric Matrices Outline Reference: Chapter 7.5

3 Norm-preserving A linear operator is norm-preserving if ๐‘‡ ๐‘ข = ๐‘ข
๐‘‡ ๐‘ข = ๐‘ข For all u Example: linear operator T on R2 that rotates a vector by ๏ฑ. ๏ƒž Is T norm-preserving? Anything in Common? Example: linear operator T is refection ๏ƒž Is T norm-preserving? ๐ด= โˆ’1

4 Norm-preserving A linear operator is norm-preserving if ๐‘‡ ๐‘ข = ๐‘ข
๐‘‡ ๐‘ข = ๐‘ข For all u Example: linear operator T is projection ๏ƒž Is T norm-preserving? ๐ด= Example: linear operator U on Rn that has an eigenvalue ๏ฌ ๏‚น ยฑ1. ๏ƒž U is not norm-preserving, since for the corresponding eigenvector v, ๏ผ๏ผU(v)๏ผ๏ผ = ๏ผ๏ผ๏ฌv๏ผ๏ผ = ๏ผ๏ฌ๏ผยท๏ผ๏ผv๏ผ๏ผ ๏‚น ๏ผ๏ผv๏ผ๏ผ.

5 Orthogonal Matrix An nxn matrix Q is called an orthogonal matrix (or simply orthogonal) if the columns of Q form an orthonormal basis for Rn Orthogonal operator: standard matrix is an orthogonal matrix. unit unit is an orthogonal matrix. orthogonal

6 Norm-preserving Necessary conditions: Norm-preserving
Orthogonal Matrix ? ??? Linear operator Q is norm-preserving Why there is no northonormal matrix?????????????????????????????????????????????????????? ๏ผ๏ผqj๏ผ๏ผ = 1 ๏ผ๏ผqj๏ผ๏ผ = ๏ผ๏ผQej๏ผ๏ผ = ๏ผ๏ผej๏ผ๏ผ qi and qj are orthogonal ็•ขๅผๅฎš็† ๏ผ๏ผqi + qj๏ผ๏ผ2 = ๏ผ๏ผQei + Qej๏ผ๏ผ2 = ๏ผ๏ผQ(ei + ej)๏ผ๏ผ2 = ๏ผ๏ผei + ej๏ผ๏ผ2 = 2 = ๏ผ๏ผqi๏ผ๏ผ2 + ๏ผ๏ผqj๏ผ๏ผ2

7 Orthogonal Matrix Q is an orthogonal matrix ๐‘„๐‘„ ๐‘‡ = ๐ผ ๐‘›
Those properties are used to check orthogonal matrix. Q is an orthogonal matrix ๐‘„๐‘„ ๐‘‡ = ๐ผ ๐‘› ๐‘„ is invertible, and ๐‘„ โˆ’1 = ๐‘„ ๐‘‡ ๐‘„๐‘ขโˆ™๐‘„๐‘ฃ=๐‘ขโˆ™๐‘ฃ for any u and v ๐‘„๐‘ข = ๐‘ข for any u Simple inverse Q preserves dot projects Q preserves norms Proof (b) ๏ƒณ (c) By definition of invertible matrices (a) ๏ƒž (b) with Q = [ q1 q2 ๏Œ qn ], qi ๏‚ท qi = 1 = [QTQ]ii ๏€ขi, and qi ๏‚ท qj = 0 = [QTQ]ij ๏€ขi ๏‚น j. ๏ƒž QTQ = In (c) ๏ƒž (d) ๏€ขu, v ๏ƒŽ Rn, Qu ๏‚ท Qv = u ๏‚ท QTQv = u ๏‚ท Q๏€ญ1Qv = u ๏‚ท v. (d) ๏ƒž (e) ๏€ขu ๏ƒŽ Rn, ๏ผ๏ผQu๏ผ๏ผ = (Qu ๏‚ท Qu)1/2 = (u ๏‚ท u)1/2 = ๏ผ๏ผu๏ผ๏ผ. (e) ๏ƒž (a) The above necessary conditions. Norm-preserving Orthogonal Matrix

8 Orthogonal Matrix Let P and Q be n x n orthogonal matrices ๐‘‘๐‘’๐‘ก๐‘„=ยฑ1
๐‘ƒ๐‘„ is an orthogonal matrix ๐‘„ โˆ’1 is an orthogonal matrix ๐‘„ ๐‘‡ is an orthogonal matrix Check by ๐‘ƒ๐‘„ โˆ’1 = ๐‘ƒ๐‘„ ๐‘‡ Check by ๐‘„ โˆ’1 โˆ’1 = ๐‘„ โˆ’1 ๐‘‡ Proof (a) QQT = In ๏ƒž det(In) = det(QQT) = det(Q)det(QT) = det(Q)2 ๏ƒž det(Q) = ยฑ1. (b) (PQ)T = QTPT = Q๏€ญ1P๏€ญ1 = (PQ)๏€ญ1. Rows and columns

9 Orthogonal Operator Applying the properties of orthogonal matrices on orthogonal operators T is an orthogonal operator ๐‘‡ ๐‘ข โˆ™๐‘‡ ๐‘ฃ =๐‘ขโˆ™๐‘ฃ for all ๐‘ข and ๐‘ฃ ๐‘‡ ๐‘ข = ๐‘ข for all ๐‘ข T and U are orthogonal operators, then ๐‘‡๐‘ˆ and ๐‘‡ โˆ’1 are orthogonal operators. Preserves dot product Preserves norms

10 Example: Find an orthogonal operator T on R3 such that
๐‘‡ = Norm-preserving ๐‘ฃ= Find ๐ด โˆ’1 first ๐ด๐‘ฃ= ๐‘’ 2 ๐‘ฃ= ๐ด โˆ’1 ๐‘’ 2 Because ๐ด โˆ’1 = ๐ด ๐‘‡ ๐ด โˆ’1 = โˆ— โˆ— โˆ— 0 โˆ— โˆ— โˆ— Also orthogonal ๐ด โˆ’1 = โˆ’ โˆ’1 2 0 1 0 ๐ด= ๐ด โˆ’1 ๐‘‡ = โˆ’

11 Conclusion Orthogonal Matrix (Operator)
Columns and rows are orthogonal unit vectors Preserving norms, dot products Its inverse is equal its transpose

12 Orthogonal Matrices Symmetric Matrices Outline Reference: Chapter 7.5

13 Eigenvalues are real The eigenvalues for symmetric matrices are always real. How about more general cases? Consider 2 x 2 symmetric matrices ๅฏฆไฟ‚ๆ•ธๅคš้ …ๅผ่™›ๆ นๅ…ฑ่ป› ๐‘‘๐‘’๐‘ก ๐ดโˆ’๐‘ก ๐ผ 2 = ๐‘ก 2 โˆ’ ๐‘Ž+๐‘ ๐‘ก+๐‘Ž๐‘โˆ’ ๐‘ 2 The symmetric matrices always have real eigenvalues.

14 Orthogonal Eigenvectors
A is symmetric ๐‘‘๐‘’๐‘ก ๐ดโˆ’๐‘ก ๐ผ ๐‘› Factorization = ๐‘กโˆ’ ๐œ† 1 ๐‘š 1 ๐‘กโˆ’ ๐œ† 2 ๐‘š 2 โ€ฆ ๐‘กโˆ’ ๐œ† ๐‘˜ ๐‘š ๐‘˜ โ€ฆโ€ฆ โ€ฆโ€ฆ Eigenvalue: ๐œ† 1 ๐œ† 2 ๐œ† ๐‘˜ โ€ฆโ€ฆ Eigenspace: ๐‘‘ 1 โ‰ค ๐‘š 1 ๐‘‘ 2 โ‰ค ๐‘š 2 ๐‘‘ ๐‘˜ โ‰ค ๐‘š ๐‘˜ (dimension) Independent orthogonal

15 Orthogonal Eigenvectors
A is symmetric. If ๐‘ข and ๐‘ฃ are eigenvectors corresponding to eigenvalues ๐œ† and ๐œ‡ (๐œ†โ‰ ๐œ‡) ๐‘ข and ๐‘ฃ are orthogonal.

16 P is an orthogonal matrix
Diagonalization A=๐‘ƒD P ๐‘‡ P560 ? A is symmetric P ๐‘‡ A๐‘ƒ=D P is an orthogonal matrix : simple D is a diagonal matrix P ๐‘‡ A๐‘ƒ=D P โˆ’1 A๐‘ƒ=D A=๐‘ƒD P โˆ’1 Diagonalization A=๐‘ƒD P ๐‘‡ P consists of eigenvectors , D are eigenvalues

17 Diagonalization Example A=๐‘ƒD P ๐‘‡ A=๐‘ƒD P โˆ’1 P ๐‘‡ A๐‘ƒ=D
A has eigenvalues ๏ฌ1 = 6 and ๏ฌ2 = 1, with corresponding eigenspaces E1 = Span{[ ๏€ญ1 2 ]T} and E2 = Span{[ 2 1 ]T} orthogonal ๏ƒž B1 = {[ ๏€ญ1 2 ]T/๏ƒ–5} and B2 = {[ 2 1 ]T/๏ƒ–5}

18 Example of Diagonalization of Symmetric Matrix
A=๐‘ƒD P โˆ’1 A=๐‘ƒD P ๐‘‡ P is an orthogonal matrix Intendent Gram- Schmidt ๏ฌ1 = 2 ๐‘†๐‘๐‘Ž๐‘› โˆ’ , โˆ’2 6 Eigenspace: ๐‘†๐‘๐‘Ž๐‘› โˆ’ , โˆ’1 0 1 normalization Not orthogonal ๏ฌ2 = 8 ๐‘†๐‘๐‘Ž๐‘› Eigenspace: ๐‘†๐‘๐‘Ž๐‘› normalization ๐‘ƒ= โˆ’ โˆ’ ๐ท=

19 P is an orthogonal matrix
Diagonalization P is an orthogonal matrix A is symmetric P ๐‘‡ A๐‘ƒ=D A=๐‘ƒD P ๐‘‡ P consists of eigenvectors , D are eigenvalues Finding an orthonormal basis consisting of eigenvectors of A (1) Compute all distinct eigenvalues ๏ฌ1, ๏ฌ2, ๏‹, ๏ฌk of A. (2) Determine the corresponding eigenspaces E1, E2, ๏‹, Ek. (3) Get an orthonormal basis B i for each Ei. (4) B = B 1๏ƒˆ B 2๏ƒˆ๏Œ๏ƒˆ B k is an orthonormal basis for A.

20 Diagonalization of Symmetric Matrix
๐‘ข= ๐‘ 1 ๐‘ฃ 1 + ๐‘ 2 ๐‘ฃ 2 +โ‹ฏ+ ๐‘ ๐‘˜ ๐‘ฃ ๐‘˜ ๐‘ขโˆ™ ๐‘ฃ 1 ๐‘ขโˆ™ ๐‘ฃ 2 ๐‘ขโˆ™ ๐‘ฃ ๐‘˜ Orthonormal basis ๐ท ๐‘‡ B ๐‘ฃ B ๐‘‡ ๐‘ฃ B simple Eigenvectors form the good system ๐‘ƒ โˆ’1 ๐‘ƒ ๐ต โˆ’1 ๐ต Properly selected Properly selected ๐ด=๐‘ƒ๐ท ๐‘ƒ โˆ’1 ๐‘ฃ ๐‘‡ ๐‘ฃ A is symmetric

21 Spectral Decomposition
Orthonormal basis A = PDPT Let P = [ u1 u2 ๏Œ un ] and D = diag[ ๏ฌ1 ๏ฌ2 ๏Œ ๏ฌn ]. = P[ ๏ฌ1e1 ๏ฌ2e2 ๏Œ ๏ฌnen ]PT = [ ๏ฌ1Pe1 ๏ฌ2Pe2 ๏Œ ๏ฌnPen ]PT = [ ๏ฌ1u1 ๏ฌ2u2 ๏Œ ๏ฌnun ]PT ๐‘ƒ 1 ๐‘ƒ 2 ๐‘ƒ ๐‘› = ๐œ† 1 P 1 + ๐œ† 2 P 2 +โ‹ฏ+ ๐œ† ๐‘› P ๐‘› ๐‘ƒ ๐‘– are symmetric

22 Spectral Decomposition
Orthonormal basis A = PDPT Let P = [ u1 u2 ๏Œ un ] and D = diag[ ๏ฌ1 ๏ฌ2 ๏Œ ๏ฌn ]. = ๐œ† 1 P 1 + ๐œ† 2 P 2 +โ‹ฏ+ ๐œ† ๐‘› P ๐‘›

23 Spectral Decomposition
Example ๐ด= 3 โˆ’4 โˆ’4 โˆ’3 Find spectrum decomposition. ๐‘ƒ 1 = ๐‘ข 1 ๐‘ข 1 ๐‘‡ = โˆ’2 5 โˆ’ Eigenvalues ๏ฌ1 = 5 and ๏ฌ2 = ๏€ญ5. An orthonormal basis consisting of eigenvectors of A is ๐ต= โˆ’ , ๐‘ƒ 2 = ๐‘ข 2 ๐‘ข 2 ๐‘‡ = ๐‘ข 1 ๐‘ข 2 ๐ด= ๐œ† 1 ๐‘ƒ 1 + ๐œ† 2 ๐‘ƒ 2

24 P is an orthogonal matrix
Conclusion Any symmetric matrix has only real eigenvalues has orthogonal eigenvectors. is always diagonalizable A is symmetric P is an orthogonal matrix P ๐‘‡ A๐‘ƒ=D A=๐‘ƒD P ๐‘‡

25 Appendix

26 Diagonalization By induction on n. n = 1 is obvious.
Assume it holds for n ๏‚ณ 1, and consider A ๏ƒŽ R(n+1)๏‚ด(n+1). A has an eigenvector b1 ๏ƒŽ Rn+1 corresponding to a real eigenvalue ๏ฌ, so ๏€ค an orthonormal basis B = {b1, b2, ๏‹, bn+1} by the Extension Theorem and Gram- Schmidt Process.

27 S = ST ๏ƒŽ Rn๏‚ดn ๏ƒž ๏€ค an orthogonal C ๏ƒŽ Rn๏‚ดn and a diagonal L ๏ƒŽ Rn๏‚ดn
such that CTSC = L by the induction hypothesis. Gram-Schmidt

28 Example: reflection operator T about a line L passing the origin.
Question: Is T an orthogonal operator? (An easier) Question: Is T orthogonal if L is the x-axis? b1 is a unit vector along L . b2 is a unit vector perpendicular to L . P = [ b1 b2 ] is an orthogonal matrix. B = {b1, b2} is an orthonormal basis of R2. [T]B = diag[1 ๏€ญ1] is an orthogonal matrix. Let the standard matrix of T be Q. Then [T]B = P๏€ญ1QP, or Q = P[T]B P๏€ญ1 ๏ƒž Q is an orthogonal matrix. ๏ƒž T is an orthogonal operator.


Download ppt "Orthogonal Matrices & Symmetric Matrices"

Similar presentations


Ads by Google