Download presentation
Presentation is loading. Please wait.
Published byStefan Axelsson Modified over 4 years ago
1
Search for the critical point in the phase diagram
for QCD matter Roy A. Lacey Stony Brook University Plan Introduction QCD phase diagram & itβs ``landmarksβ Strategy for CEP search Anatomical & operational Finite-Size Scaling functions (FSS) Basics Proof of principle Experimental Scaling Functions Demonstrate FSS for πΏ π» and π π© π ( π π ,π) π π© π ( π π ,π) Dynamic FSS to estimate z? Epilogue Takeaway messages; The critical end point (CEP) exists and is characterizable Finite-Size/Finite-time Scaling is essential to credible searches for the CEP Finite-size susceptibility scaling functions extracted from currently available data, give estimates for; the location ( π» πππ , π π© πππ ) of the CEP the critical exponents - π, πΈ, π·, πΉ πππ
π Roy A. Lacey, Weihai-Shandong University, China
2
QCD Phase Diagram Quantitative study of the QCD phase diagram is a major focus of our field NICA π π > π π ππππ > π π,π
CEP validation requires knowledge about; Its location ( π πππ , π π΅ πππ )? Its static critical exponents - Ξ²,π, πΎ, etc.? Static universality class? Order of the transition Itβs dynamic critical exponent/s β z? Dynamic universality class? M. A. Halasz, et. al. Phys. Rev. DΒ 58, (1998) All are required to fully characterize the CEP! Roy A. Lacey, Weihai-Shandong University, China
3
3D-Ising Universality Class
Exploration strategy - Anatomical( The critical end point is characterized by singular behavior at/near π» πππ , π π© πππ J. Cleymans et al., Phys. Rev. C73, Andronic et al., Acta. Phys.Polon. B40, 1005 (2009) 3D-Ising Universality Class If reaction trajectories pass through the critical region, it can; Influence baryon number susceptibility and the associated critical fluctuations The freezeout and the critical region should not be too far apart Influence baryon number susceptibility and the associated expansion dynamics The freezeout and the critical region do not have to be similarly close Vary the beam energy ( π¬ ππ ) to explore the ( π, π π )-plane for anomalous transitions which signal the CEP Roy A. Lacey, Weihai-Shandong University, China
4
Exploration strategy - Dynamics driven
Dirk Rischke and Miklos Gyulassy Nucl.Phys.A608: ,1996 Exploration strategy - Dynamics driven π π 2 = 1 π π
π π
π π
π = π π π π The radii of the βfireballβ encode space-time information related to the expansion dynamics π π O (R2out - R2side) sensitive to πΏ The divergence of πΏ at or near the CEP βsoftensββ the sound speed cs extends the emission duration The compressibility, which influence the expansion dynamics, shows a (power law) divergence at/near the CEP Search for this influence with femtoscopy? Measure (R2out - R2side) as a function of π¬ ππ [ π π , π»], to search for non-monotonic signature signaling the CEP! Proviso ο Finite size/time effects Roy A. Lacey, Weihai-Shandong University, China
5
Exploration strategy β Fluctuations driven
Anomalous transitions near the CEP lead to critical fluctuations of the conserved charges (q = Q, B, S) Cumulants often used to Characterize distribution πΆ 1 π = π πΆ 2 π = πΏπ 2 πΆ 3 π = πΏπ 3 πΆ 4 π = πΏπ 4 β πΏπ The moments of these distributions grow as powers of πΏπ= πβ π A flat distribution has only one non-zero cumulant C1. πΆ π π =0, for n > 2, for a Gaussian distribution Higher order cumulants characterizes the non-Gaussianity of a distribution Higher order cumulants reach their maximum at/near the CEP π=πΆ 1 π΅ π 2 =πΆ 2 π΅ π= πΆ 3 π΅ π 2 3/2 π
= πΆ 4 π΅ π 2 2 **Fluctuations can be expressed as a ratio of susceptibilities** Measure cumulants of conserved charge distributions as a function of π¬ ππ ( π π ,T), to search for critical fluctuations! Proviso ο Finite size/time effects Roy A. Lacey, Weihai-Shandong University, China
6
Exploration strategy β Fluctations/Dynamics
Non-monotonic patterns for cumulants or susceptibility ratios could signal the CEP ο strong dependence on model specifics reaction trajectory Holographic QCD phase diagram with critical point Consistency Check 1 π π π ππ½π = π 2 β π 2 π π
π β π 2 β π 2 π = πΆ 2 πΆ 1 The singular contributions to baryon number susceptibility ratios are universal features for phase transitions and the existence of the CEP! Proviso ο Finite size/time effects Roy A. Lacey, Weihai-Shandong University, China
7
Collision systems are small and short-lived!
Finite-Size effects strongly influence characterization of the CEP Collision systems are small and short-lived! Significant signal attenuation Shifts the CEP to a new pseudocritical point Finite-size effects on the sixth order cumulant -- 3D Ising model E. Fraga et. al. J. Phys.G 38:085101, 2011 Pan Xue et al arXiv: Displacement of pseudo-CEP & pseudo-first-order transition lines due to finite-size FSE on temp dependence of minimum ~ L2.5n A flawless measurement, sensitive to FSE, cannot locate and characterize the CEP directly Roy A. Lacey, Weihai-Shandong University, China
8
Basics of the Finite-Size Effect
Illustration large L small L T > Tc L characterizes the system size T close to Tc note change in peak heights, positions & widths ο The curse of Finite-Size Effects (FSE) In addition to signal attenuation, only a pseudo-critical point (shifted from the genuine CEP) can be observed! Roy A. Lacey, Weihai-Shandong University, China
9
Basics of the Finite-Time Effect
π ππ diverges at the CEP so relaxation of the order parameter could be anomalously slow z is the dynamic critical exponent Consequence π‘ ππ ~ π π§ β‘ π βππ§ π ~ π‘ 1/π§ Non-linear dynamics ο Multiple slow modes zT ~ 3, zv ~ 2, zs ~ -0.8 zs < 0 - Critical speeding up z > 0 - Critical slowing down Y. Minami - Phys.Rev. D83 (2011) Significant signal attenuation for short-lived processes with zT ~ 3 or zv ~ 2 eg. πͺ π ~ π π (without FTE) πͺ π ~ π π/π βͺ π π (with FTE) **Note that observables driven by thermoacoustic coupling would not be similarly affected** FTE complicate the search for the CEP in short-lived systems. Roy A. Lacey, Weihai-Shandong University, China
10
Inconvenient truths: Solution? Anatomy of search strategy - Summary
Finite-size and finite-time effects complicate the search for the CEP, as well as its characterization. They impose non-negligible constraints on the growth of ΞΎ. The observation of a non-monotonic experimental signature, while instructive, would not be sufficient to identify and characterize the CEP. One should not associate the onset of non-monotonic CEP-driven signatures with the actual location of the CEP. Solution? Leverage susceptibility scaling functions to locate and characterize the CEP To date, this constitutes the only credible experimental approach to characterize the CEP! Roy A. Lacey, Weihai-Shandong University, China
11
Finite-Size-Scaling (FSS) - Anatomical(
Generalized Finite-Size-Finite-Time Scaling form for π π π,π», π‘,πΏ = πΏ πΎ π π(π πΏ 1 π ,π» πΏ π½πΏ π ,π‘ πΏ βπ§ ) π= cor. length π = eff. cor. length for FTE πΏ= sys. size Ο=πβ π πππ H = field t = time Finite-Size Scaling For π> π >πΏ π π», πΏ = πΏ πΎ π π 1 π π» πΏ π½πΏ π π π, π‘ = πΏ πΎ π π 2π‘ π (π πΏ 1 π ,π‘ πΏ βπ§ ) dynamic finite-size scaling form for the correlation time π π,πΏ = πΏ πΎ π π 2 π (π πΏ 1 π ) π‘ πΏ =πΏ π§ π 3π‘ π (π πΏ 1 π ) An observation of Finite-Size Scaling of susceptibility measurements would give access to the CEPβs location and the critical exponents Roy A. Lacey, Weihai-Shandong University, China
12
Finite-Size-Scaling (FSS) - Operational(
Consider measurements of the susceptibility (Ο(π»)) for different lengths (π= π π/π ) Scaling Function M. Suzuki, Prog. Theor. Phys. 58, 1142, 1977 Finite-size effects lead to characteristic dependencies of the peak heights, widths & positions on L, which scale with the critical exponents. The scaling of these dependencies give access to the CEPβs location, critical exponents and a non-singular scaling function. Roy A. Lacey, Weihai-Shandong University, China
13
Finite-Size Scaling Functions
π(π»,πΏ)= πΏ πΎ/π π π ( π»πΏ π½πΏ/π ) π π»πΏ Ξ²Ξ΄/π ππΏ βπΎ/π Finite-Size Scaling functions validate the CEPβs location and the associated critical exponents. Roy A. Lacey, Weihai-Shandong University, China
14
FSS - Proof of Principle Apply similar idea to data?
E. Fraga et. al. J. Phys.G 38:085101, 2011 FSS - Proof of Principle π π = π πππ π β π πππ β ~ πΏ β1/π π πππ β ΞΌ πππ β π ΞΌ = ΞΌ πππ π β ΞΌ πππ β ~ πΏ βΞ²Ξ΄/π Finite Size Scaling confirms the CEPβs infinite-volume location and itβs associated critical exponents. Apply similar idea to data? Roy A. Lacey, Weihai-Shandong University, China
15
πΊπππ π
πππππ
ππππ ππ π―π©π» ππππππππππ πππππππππ
The divergence of the susceptibility π βsoftensββ the sound speed cs extends the emission duration I. Use (πΉ πππ π - πΉ πππ
π π ) as a proxy for the susceptibility II. Parameterize distance to the CEP by π π΅π΅ π π = π β π πͺπ¬π· / π πͺπ¬π· The measurements indicate non-monotonic behavior! characteristic patterns, signal the effects of finite-size Perform Finite-Size Scaling analysis with length scale Roy A. Lacey, Weihai-Shandong University, China
16
scales the volume Length Scale for Finite Size Scaling
Lacey QM2014 Adare et. al. (PHENIX) . arXiv: Length Scale for Finite Size Scaling π
β‘πΏ is a characteristic length scale of the initial-state transverse size, Οx & Οy ο RMS widths of density distribution π
β‘πΏ scales the volume scales the full RHIC and LHC data sets π
β‘πΏ Roy A. Lacey, Weihai-Shandong University, China
17
ππππππ πΊπππ πΊππππππ ππ πππ πΊππππππππππππ πππππ
Phys.Rev.Lett. 114 (2015) no.14, R out 2 β R side 2 max β πΏ πΎ π π ππ π = π ππ β βπΓ πΏ 1 π π
β‘πΏ π ππ β ~ GeV π πππ β π ~ 0 .63 π ππ πΆπΈπ ~ GeV The extracted critical exponents (π and πΈ) validate the 3D Ising model (static) universality class 2nd order phase transition for the CEP Roy A. Lacey, Weihai-Shandong University, China
18
πΊππππππππππππ πΊππππππ ππππππππ
πΏ βπΎ π π π ,πΏ = π 2 π (π πΏ 1 π ) π
β‘πΏ s= π β π πͺπ¬π· / π πͺπ¬π· Data collapse onto a single curve, confirms the expected non-singular scaling function. Roy A. Lacey, Weihai-Shandong University, China
19
ππππππ πΊπππ πΊππππππ ππ πππ πΊππππππππππππ πππππ ( π π© )
Karsch et. al π ΞΌ = ΞΌ πππ π β ΞΌ πππ β ~ πΏ βΞ²Ξ΄/π Strong Vol. dependence ΞΌ πππ β Mapping π ππ β(π, π π΅ ) π ππ πΆπΈπ ~ GeV π π΅ πππ ~ 90 MeV (Vββ) π πππ ~ 155 MeV, π π΅ πππ ~ 90 MeV (Vββ) Ξ΄ ~ 4.8 Ξ² ~ 0 .33 Further validation of the CEP and the critical exponents ο 3D Ising universality class Roy A. Lacey, Weihai-Shandong University, China
20
Use π as a proxy for π π΅ ο π π΅ πΆπΈπ ~ 90 πππ
πΊππππππππππππ πΊππππππ ππππππππ π( π π , L)= πΏ π½πΏ π π 1 π π π πΏ π½πΏ π π
β‘πΏ Use π as a proxy for π π΅ ο π π΅ πΆπΈπ ~ 90 πππ Data collapse onto a single curve, confirms the expected non-singular scaling function. Roy A. Lacey, Weihai-Shandong University, China
21
π( π π , L)= πΏ βπ½πΏ π π 1 π π π πΏ π½πΏ π
πΊππππππ ππππππππ πππ π΅ππ ππππππ πΊππππππππππππ πππππ π( π π , L)= πΏ βπ½πΏ π π 1 π π π πΏ π½πΏ π π( π π , L)= πΏ π½πΏ π π 1 π π π πΏ π½πΏ π πͺ π π«π΅ π πππππππππ
from π
ππππππππππππ π
π β πͺ π π«π΅ π β πͺ π π«π΅ π Ξπ π = πͺ π π«π΅ π πͺ π π«π΅ π Data collapse onto a single curve, confirms the expected non-singular scaling function. Roy A. Lacey, Weihai-Shandong University, China
22
Epilogue Strong experimental indication for the CEP and its location
New Data from RHIC (BES-II) together with theoretical modeling, are essential for further validation tests for characterization of the CEP and the coexistence regions of the phase diagram (Dynamic) Finite-Size Scalig analysis 3D Ising Model (static) universality class for CEP 2nd order phase transition Ξ²~ 0 .33 π πππ ~ 155 MeV, π π΅ πππ ~ 90 MeV z~ 0 .87 Landmark validated Crossover validated Deconfinement validated (Static) Universality class validated Model H dynamic Universality class? Other implications! Excitation functions for more systems are especially important Roy A. Lacey, Weihai-Shandong University, China
23
End Roy A. Lacey, Weihai-Shandong University, China
24
Note that π π© π , π» π is not strongly dependent on L
π΄ππππππ π π΅π΅ ππ ( π», π π© ) Karsch et. al Use Lattice EOS to map π ππ β(π, π π΅ ) Note that π π© π , π» π is not strongly dependent on L Roy A. Lacey, Weihai-Shandong University, China
25
Experimental estimate of one of the dynamic critical exponents
π«ππππππ ππππππβπΊπππ πΊππππππ 2nd order phase transition π ~ 0 .63 πΎ ~ 1 .2 π πππ ~ 155 MeV, π π΅ πππ ~ 90 MeV (Vββ) DFSS ansatz at time t when T is near Tcep π πΏ,π,π‘ = πΏ πΎ/π π ππΏ 1/π ,π‘ πΏ βπ§ For T = Tc π πΏ, π π ,π‘ = πΏ πΎ/π π π‘ πΏ βπ§ Experimental estimate of one of the dynamic critical exponents M. Suzuki, Prog. Theor. Phys. 58, 1142, 1977 Roy A. Lacey, Weihai-Shandong University, China
26
Large theoretical uncertainties Additional experimental
CEP Knowns & unknowns S. Datta, R. V. Gavai and S. Gupta, QM 2012 Scaling relations Known knowns Theory consensus on the static universality class for the CEP 3D-Ising Z(2), π ~ 0.63 , πΎ ~ 1.2 Summary - M. A. Stephanov Int. J. Mod. Phys. A 20, 4387 (2005) Experimental verification - RL, PRL 114, (2015) Frithjof Karsch CPOD 2016 Known knowns/unknowns Location ( π πππ© , π π πππ© ) of the CEP? Experimental estimate - RL, PRL 114, (2015) Dynamic Universality class for the CEP? One slow mode (L), z ~ 3 - Model H Son & Stephanov, Phys.Rev. D70 (2004) Moore & Saremi, JHEP 0809, 015 (2008) Three slow modes (NL) zT ~ 3 zv ~ 2 zs ~ [critical speeding-up] Y. Minami - Phys.Rev. D83 (2011) Large theoretical uncertainties [critical slowing down] Additional experimental study to further characterize the CEP is an imperative Roy A. Lacey, Weihai-Shandong University, China
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.