Presentation is loading. Please wait.

Presentation is loading. Please wait.

Common Dimensionless Groups in Fluid Mechanics

Similar presentations


Presentation on theme: "Common Dimensionless Groups in Fluid Mechanics"— Presentation transcript:

1 Common Dimensionless Groups in Fluid Mechanics
Variables Dimension M L T Characteristic length l 1 Characteristic velocity V LT1 1 Density  ML3 3 Viscosity  ML1T1 Surface tension  MT2 2 Speed of sound c Pressure p or p ML1T2 Acceleration of gravity g LT2 Bulk Modulus Ev Frequency  T1

2 Dimensionless Parameters
Definition Physical interpretation Type of applications Reynolds number Inertial force viscous force All type of fluid dynamics problems Froude number Inertial force gravitational force Free surface flows (waves) Mach number Inertial force compressibility force Compressible flow Cauchy number Weber number Inertial force surface tension force Free surface flow (two phase)

3 Dimensionless Parameters
Definition Physical interpretation Type of applications Cavitationnumber Pressure (vapor) inertial force Cavitation Euler number pressure force inertial force Pressure coefficient Drag/Lift coefficents Drag/lift force dynamic force Aero/hydrodynamics Strouhal number Inertial (local) force inertial (convective) Oscillatory flow (shedding) Roughness ratio Wall roughness body length Turbulent flow, rough surface

4 Example – Dimensional Analysis
A jet of liquid is directed vertically upward in the atmosphere. List the variables that determines the maximum height to which the drops of liquid rise. Establish the dimensionless parameters for the problem. g h V D

5 negligible relative fluid motion (velocity gradient)
Dimensional Analysis The maximum height h depends on Geometry D: diameter of the jet Fluid property a : density of air a : Viscosity of air w : density of water (but not w) w : surface tension of droplets External effects g : gravity Others V: velocity (or Q = wVA) negligible relative fluid motion (velocity gradient)

6 Dimensionless PI terms
h = f ( D, w , a , a ,  , g , V ) k = 8, r = 3, k – 3 = 5 dimensionless parameters Select 3 repeating variables (w , D, V )

7 Dimensionless PI terms
(Reynolds number for air) (Froude number for water) velocity of water (Weber number for water)

8 Fisherman’s Wharf San Francisco Bay 1:75 scale model

9 Fisherman’s Wharf, San Francisco Bay

10 Froude number similarity
Hydraulic Model Froude number similarity Velocity scale Time scale Volume flow rate Forces Scale effects

11 Froude Number Similarity
HC Chen 1/18/2020 Froude Number Similarity Parameter Prototype Model Scale Bay shoreline length 6,400 ft 85.33 ft 1/75 Proposed Solid Breakwater 1,000 ft 13.33 ft Offshore water depth 60 ft 0.8 ft Typical Wave Height 2.0–3.3 ft 0.32–0.53 in Total Area 1.1 mile2 ~ 6000 ft2 (1/75)2 Wave Period 34.5–228 sec 3.98–26.33 sec (1/75)1/2 Simulation Time 24 hr 1 month 2.77 hr 3.5 days Flow Rate Qp Qm (1/75)5/2 Wave Force Fp Fm (1/75)3 Reynolds Number (Re)p (Re)m (1/75)3/2 Chapter 7 Examples


Download ppt "Common Dimensionless Groups in Fluid Mechanics"

Similar presentations


Ads by Google