Download presentation
Presentation is loading. Please wait.
1
Centrality – Python - NetworkX
2
Degree Centrality Degree Centrality – Find the “Celebrities”
Figure 1.1 Network >>> degree_centrality = net.degree_centrality(g) >>> degree_centrality {1: 0.375, 2: 0.25, 3: 0.375, 4: 0.5, 5: 0.5, 6: 0.5, 7: 0.5, 8: 0.375, 9: 0.125} Define sort_map funtion Sort the degree centrality >>> import sort_map >>> sorted_degree_centrality = sort_map.sort_map(degree_centrality) >>> sorted_degree_centrality [(4, 0.5), (5, 0.5), (6, 0.5), (7, 0.5), (1, 0.375), (3, 0.375), (8, 0.375), (2, 0.25), (9, 0.125)] sort_map.py import operator def sort_map(map): sortedList = map.items() sortedList.sort(key=operator.itemgetter(1), reverse=True) return sortedList
3
Closeness Centrality Closeness Centrality - Find the Gossipmongers
Figure 1.1 Network >>> closeness_centrality = net.closeness_centrality(g) >>> closeness_centrality {1: , 2: , 3: , 4: , 5: , 6: , 7: 0.5, 8: , 9: } >>> import sort_map >>> sorted_closeness_centrality = sort_map.sort_map(closeness_centrality) >>> sorted_closeness_centrality [(4, ), (5, ), (6, ), (7, 0.5), (1, ), (3, ), (8, ), (2, ), (9, )]
4
Betweenness Centrality
Betweenness Centrality - Find the Communication Bottlenecks and/or Community Bridges Figure 1.1 Network >>> bet_centrality = net.betweenness_centrality(g) >>> bet_centrality {1: , 2: 0.0, 3: , 4: , 5: , 6: , 7: 0.25, 8: 0.0, 9: 0.0} >>> import sort_map >>> sorted_bet_centrality = sort_map.sort_map(bet_centrality) >>> sorted_bet_centrality [(4, ), (7, 0.25), (5, ), (6, ), (1, ), (3, ), (2, 0.0), (8, 0.0), (9, 0.0)]
5
Eigenvector Centrality
Figure 1.1 Network >>> eigenvector_centrality = net. eigenvector_centrality(g) >>> eigenvector_centrality {1: , 2: , 3: , 4: , 5: , 6: , 7: , 8: , 9: } >>> import sort_map >>> sorted_eigenvector_centrality = sort_map.sort_map(eigenvector_centrality) >>> sorted_eigenvector_centrality [(5, ), (6, ), (7, ), (8, ), (4, ), (1, ), (3, ), (9, ), (2, )]
6
Putting It Together Adjust the values
Values Rounded >>> rounded_degree_centrality = {k: round(v, 3) for k, v in degree_centrality.items()} >>> rounded_closeness_centrality = {k: round(v, 3) for k, v in closeness_centrality.items()} >>> rounded_bet_centrality = {k: round(v, 3) for k, v in bet_centrality.items()} >>> rounded_eigenvector_centrality = {k: round(v, 3) for k, v in eigenvector_centrality.items()} Build a table with four centralities Making some conclusions about the figure 1.1 >>> table = [[node, rounded_degree_centrality[node], rounded_closeness_centrality[node], rounded_bet_centrality[node], rounded_eigenvector_centrality[node]] for node in g.nodes()]
7
Putting It Together Build a table with four centralities
node degree closeness betweenness eigenvector 1 0.375 0.471 0.107 0.196 2 0.250 0.348 0.000 0.112 3 4 0.500 0.615 0.536 0.379 5 0.214 0.468 6 7 0.410 8 0.384 9 0.125 0.117
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.