Presentation is loading. Please wait.

Presentation is loading. Please wait.

Undulator Hall Power Dissipation

Similar presentations


Presentation on theme: "Undulator Hall Power Dissipation"— Presentation transcript:

1 Undulator Hall Power Dissipation
What is it and where does the heat go? January 22, 2008 Undulator System Meeting

2 Contents Air Flow Average heating Localized heating January 22, 2008
Undulator System Meeting

3 Air Flow From West to East only Constant flow rate 20,000 cfm
air is recirculated and brought back through a large duct in the Undulator Hall to the West end same direction as beam Constant flow rate 20,000 cfm Low average velocity, ≈ 1 mph January 22, 2008 Undulator System Meeting

4 January 22, 2008 Undulator System Meeting

5 Flow Characteristics Turbulent Flow --- Reynolds number for tunnel cross-section ( FH= 21.5 ft) is 180,000. Low velocity --- ≈ 1 mph. January 22, 2008 Undulator System Meeting

6 Temperature Control Only one zone for temperature control
just one temperature variable can be adjusted Temperature control Input temperature at discharge into the Undulator Hall will be held within ± 1 F at 68 F, with “Process Heat Load” up to 8.5 kW. The “Process Heat Load” is from the present and future undulator system equipment and doesn’t include lighting or environmental heating/cooling sources. Note 8.5 kW is 50 W/m of tunnel and 65 W/m of undulator line January 22, 2008 Undulator System Meeting

7 Sources of Heating/Cooling
Access People, equipment brought in, leakage of air Undulator System See next slide Tunnel walls and floor Initial warm up, seasonal variations, moisture Utilities Lighting, exit signs, power lines, chilled and hot water lines, phone/data/fire/pps Other systems DL2/Vertical Bend magnet wires Many different time scales: quasi-static to random January 22, 2008 Undulator System Meeting

8 Undulator System Heating Loads
F.O. Radiation Loss System Photodiode Radiation Loss System Camera Motors Cameras Quad magnets Corrector magnets Quad and Corrector Wires BPM RF Receivers BFM Sensor electronics HLS WPM Cable Drops MPS Link Boxes Vacuum Pumps Magnet Water Lines Convective load Quad Power Lines UCM Rack and Contents Translation Motors CAM Motors Undulator Motion IOC Diagnostic Motors Diagnostic Motor IOC Photomultiplier Current Estimate for Total Undulator System Load 11 kW (85 W/m of undulator line) January 22, 2008 Undulator System Meeting

9 Estimated Temperature Profile
Total temperature rise of 1.0 deg C The temperature rise will increase with time as the tunnel warms up and additional heat loads are added. Probably want to offset discharge temperature 1 F to get mean at 68 F. WEST EAST January 22, 2008 Undulator System Meeting

10 Localized Heating Warm air from local heat sources will completely mix with tunnel air within a few (<10) tunnel diameters Locally heated air persists in boundary layers which grow in size and mix with the main tunnel air stream. January 22, 2008 Undulator System Meeting

11 Forced Air Flow Around Racks or Pedestals
Laminar layer forms around obstacle, eddies form downstream of it. ReD for support pedestals is about 30,000 so it will have same type of flow From Kreith, pg 406 January 22, 2008 Undulator System Meeting

12 Free Convection Air Flow Around Racks
warmed air forms a thin boundary layer next to rack and rises air velocity at top of rack ~2 ft per s January 22, 2008 Undulator System Meeting

13 Localized Heating Estimate
4-5 deg C air rises from the rack sides, more or less vertically, and warms a portion of the grider and segment Heat flows through the girder and segment and back into the air. January 22, 2008 Undulator System Meeting

14 Temperature averaging
Effects of short term air temperature changes can be significantly averaged out. Example: Undulator segment Measured response time constant  ≈ 16 hrs. For temperature changes at period of 24 hr,  = 0.26 hr-1, there is about a factor of 4 reduction in the response of the undulator temperature. January 22, 2008 Undulator System Meeting

15 Conclusions Tunnel air temperature will rise by 1 deg C or more along the tunnel length due to power dissipation Undulator system is the dominate heat source Localized heating was semi-quantitatively investigated 150 W racks placed under the segmentswill warm adjacent air 3-4 deg C Warmed air will rise and flow directly onto the girder and undulator segment January 22, 2008 Undulator System Meeting


Download ppt "Undulator Hall Power Dissipation"

Similar presentations


Ads by Google