Presentation is loading. Please wait.

Presentation is loading. Please wait.

1/2555 สมศักดิ์ ศิวดำรงพงศ์

Similar presentations


Presentation on theme: "1/2555 สมศักดิ์ ศิวดำรงพงศ์"— Presentation transcript:

1 1/2555 สมศักดิ์ ศิวดำรงพงศ์ somsaksi@sut.ac.th
Statistics and Numerical Method Part I: Statistics Week III: Random Variables and Probability Distribution 1/2555 สมศักดิ์ ศิวดำรงพงศ์

2 Random Variables Controllable Variables Output Input
Uncontrollable Variables Controllable Variables Output Random Variable : A Numerical variable whose measured value can change from one replicate of the experiment to another

3 3-2 Random Variables Discrete random variables
Continuous random variables

4 3-3 Probability The chance of “x” A degree of belief
A relative frequency between “event frequency” to the “outcome frequency”

5 3-4 Continuous Random Variables
Cumulative Distribution Function (cdf)

6 Continuous Random Variables
Probability Density Function (pdf)

7 Continuous Random Variables
Mean and Variance

8 Example 3.5

9 3-5.1 Normal Distribution (Gaussian)

10 Normal Distribution

11 Normal Distribution

12 Normal Distribution

13 Normal Distribution

14 Normal Distribution

15 t-Distribution When  is unknown Small sample size
Degree of freedom (k) = n-1 Significant level =  t, k

16 t-Distribution

17 3-7 Discrete Random Variables
Probability Mass Function (pmf)

18 Discrete Random Variables
Cumulative Distribution Function (cdf)

19 Discrete Random Variables
Mean and Variance

20 3-8 Binomial Distribution
A Bernoulli Trial

21 Binomial Distribution

22 Binomial Distribution
Example 3-28 Bit transmission errors: Binomial Mean and Variance

23 3-9 Poison Distribution The random variable X that equals the number of events in a Poison process is a Poison random variable with parameter >0, and the probability mass function of X is The mean and variance of X are

24 3-9 Poison Distribution

25 3-9 Poison Distribution

26 3-9 Poison Distribution

27 3-10 Normal Approximation to the Binomial and Poisson Distributions

28 3-10 Normal Approximation to the Binomial and Poisson Distributions

29 3-10 Normal Approximation to the Binomial and Poisson Distributions
Normal Approximation to the Poisson

30 3-13 Random Samples, Statistics and the Central Limit Theorem

31 3-13 Random Samples, Statistics and the Central Limit Theorem

32 3-13 Random Samples, Statistics and the Central Limit Theorem

33 3-13 Random Samples, Statistics and the Central Limit Theorem

34 Q &A


Download ppt "1/2555 สมศักดิ์ ศิวดำรงพงศ์"

Similar presentations


Ads by Google