Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Lecture 5: IC Fabrication The Transistor Revolution First transistor Bell Labs, 1948 © Rabaey: Digital Integrated Circuits 2nd.

Similar presentations


Presentation on theme: "1 Lecture 5: IC Fabrication The Transistor Revolution First transistor Bell Labs, 1948 © Rabaey: Digital Integrated Circuits 2nd."— Presentation transcript:

1 1 Lecture 5: IC Fabrication The Transistor Revolution First transistor Bell Labs, 1948 © Rabaey: Digital Integrated Circuits 2nd

2 2 Lecture 5: IC Fabrication The First Integrated Circuits Bipolar logic 1960’s ECL 3-input Gate Motorola 1966 © Rabaey: Digital Integrated Circuits 2nd

3 3 Lecture 5: IC Fabrication Intel 4004 Micro-Processor 1971 1000 transistors 1 MHz operation © Rabaey: Digital Integrated Circuits 2nd

4 4 Lecture 5: IC Fabrication Moore’s Law Electronics, April 19, 1965. © Rabaey: Digital Integrated Circuits 2nd

5 5 Lecture 5: IC Fabrication Silicon IC processing F Similar to photographic printing íExpose the silicon wafer through a mask íProcess the silicon wafer íRepeat sequentially to pattern all the layers F Layout: A set of masks that tell a fabricator what to pattern íFor each layer in your circuit íLayers are metal, drain/source implants, gate, etc. íYou draw the layers ç Subject to vendor-supplied spacing rules

6 6 Lecture 5: IC Fabrication The wafer F Czochralski process íMelt silicon at 1425 °C íAdd impurities (dopants) íSpin and pull crystal F Slice into wafers í0.25mm to 1.0mm thick F Polish one side

7 7 Lecture 5: IC Fabrication

8 8 Crystal and wafer Wand (a finished 250lb crystal) A polished wafer

9 9 Lecture 5: IC Fabrication 4X reticle Wafer The mask F Illuminate reticle on wafer íTypically 4× reduction F Typical image is 25×25mm íLimited by focus F Step-and repeat across wafer íLimited by mechanical alignment

10 10 Lecture 5: IC Fabrication Reference: FULLMAN KINETICS Lithography F Patterning is done by exposing photoresist with light F Requires many steps per “layer” F Example: Implant layer

11 11 Lecture 5: IC Fabrication Grow Oxide Layer Reference: FULLMAN KINETICS

12 12 Lecture 5: IC Fabrication Reference: FULLMAN KINETICS Add Photoresist

13 13 Lecture 5: IC Fabrication Reference: FULLMAN KINETICS Mask

14 14 Lecture 5: IC Fabrication Reference: FULLMAN KINETICS Animation

15 15 Lecture 5: IC Fabrication Reference: FULLMAN KINETICS

16 16 Lecture 5: IC Fabrication Reference: FULLMAN KINETICS

17 17 Lecture 5: IC Fabrication Reference: FULLMAN KINETICS

18 18 Lecture 5: IC Fabrication Reference: FULLMAN KINETICS

19 19 Lecture 5: IC Fabrication 9/03 IEEE spectrum

20 20 Lecture 5: IC Fabrication Patterning F How we pattern and expose the resist íTo make the patterns we want on the silicon IEEE Spectrum, 7/99, p. 41

21 21 Lecture 5: IC Fabrication 9/03 IEEE spectrum

22 22 Lecture 5: IC Fabrication Detailed process sequence 1.Grow epi layer íUltra-pure single-crystal silicon 2.Implant n-well

23 23 Lecture 5: IC Fabrication Detailed process sequence (con’t) 3.Define active area 4.Grow field oxide íFor isolation

24 24 Lecture 5: IC Fabrication Detailed process sequence (con’t) 5.Grow gate oxide 6.Pattern polysilicon

25 25 Lecture 5: IC Fabrication Detailed process sequence (con’t) 7.Form pFETs 8.Form nFETs

26 26 Lecture 5: IC Fabrication Detailed process sequence (con’t) 9.Deposit LTO by CVD íLTO is low-temperature oxide íCVD is chemical vapor deposition 10. Deposit Metal1 íUsually aluminum

27 27 Lecture 5: IC Fabrication Detailed process sequence (con’t) 11. Via definition íDeposit LTO íMake via cuts 12. Deposit Metal2 íUsually aluminum 13. Overglass (not shown) íCoat entire chip with Si 3 N 4 íMake pad openings in Si 3 N 4

28 28 Lecture 5: IC Fabrication An inverter

29 29 Lecture 5: IC Fabrication Figure courtesy Yan Borodovsky, Intel A Pentium cutaway

30 30 Lecture 5: IC Fabrication National 0.18µm process cutaway

31 31 Lecture 5: IC Fabrication Advanced Metallization - Copper Copper versus Aluminum ~ 40% lower resistivity ~ 10× less electromigration

32 32 Lecture 5: IC Fabrication Interconnect Impact on Chip

33 33 Lecture 5: IC Fabrication Nature of Interconnect Global Interconnect S Local = S Technology S Global = S Die Source: Intel

34 34 Lecture 5: IC Fabrication

35 35 Lecture 5: IC Fabrication Permittivity

36 36 Lecture 5: IC Fabrication

37 37 Lecture 5: IC Fabrication

38 38 Lecture 5: IC Fabrication

39 39 Lecture 5: IC Fabrication

40 40 Lecture 5: IC Fabrication Projections Simulated distribution of dopant atoms in a 0.05  m nFET red: acceptor atom blue: donor atom All figures from IEEE Spectrum, 7/99

41 41 Lecture 5: IC Fabrication An AMD 50nm transistor

42 42 Lecture 5: IC Fabrication Frequency P6 Pentium ® proc 486 386 286 8086 8085 8080 8008 4004 0.1 1 10 100 1000 10000 19701980199020002010 Year Frequency (Mhz) Lead Microprocessors frequency doubles every 2 years Doubles every 2 years Courtesy, Intel © Rabaey: Digital Integrated Circuits 2nd

43 43 Lecture 5: IC Fabrication Power Dissipation P6 Pentium ® proc 486 386 286 8086 8085 8080 8008 4004 0.1 1 10 100 197119741978198519922000 Year Power (Watts) Lead Microprocessors power continues to increase Courtesy, Intel © Rabaey: Digital Integrated Circuits 2nd

44 44 Lecture 5: IC Fabrication Power density 4004 8008 8080 8085 8086 286 386 486 Pentium® proc P6 1 10 100 1000 10000 19701980199020002010 Year Power Density (W/cm2) Hot Plate Nuclear Reactor Rocket Nozzle Power density too high to keep junctions at low temp Courtesy, Intel © Rabaey: Digital Integrated Circuits 2nd

45 45 Lecture 5: IC Fabrication Productivity Trends 1 10 100 1,000 10,000 100,000 1,000,000 10,000,000 200319811983198519871989199119931995199719992001200520072009 10 100 1,000 10,000 100,000 1,000,000 10,000,000 100,000,000 Logic Tr./Chip Tr./Staff Month. x x x x x x x 21%/Yr. compound Productivity growth rate x 58%/Yr. compounded Complexity growth rate 10,000 1,000 100 10 1 0.1 0.01 0.001 Logic Transistor per Chip (M) 0.01 0.1 1 10 100 1,000 10,000 100,000 Productivity (K) Trans./Staff - Mo. Source: Sematech Complexity outpaces design productivity Complexity Courtesy, ITRS Roadmap © Rabaey: Digital Integrated Circuits 2nd

46 46 Lecture 5: IC Fabrication Cost of Integrated Circuits F NRE (non-recurrent engineering) costs ídesign time and effort, mask generation íone-time cost factor F Recurrent costs ísilicon processing, packaging, test íproportional to volume íproportional to chip area

47 47 Lecture 5: IC Fabrication NRE Cost is Increasing © Rabaey: Digital Integrated Circuits 2nd

48 48 Lecture 5: IC Fabrication Die Cost Single die Wafer From http://www.amd.com Going up to 12” (30cm) © Rabaey: Digital Integrated Circuits 2nd


Download ppt "1 Lecture 5: IC Fabrication The Transistor Revolution First transistor Bell Labs, 1948 © Rabaey: Digital Integrated Circuits 2nd."

Similar presentations


Ads by Google