Presentation is loading. Please wait.

Presentation is loading. Please wait.

Central Dogma Theory and Kinetic Models

Similar presentations


Presentation on theme: "Central Dogma Theory and Kinetic Models"β€” Presentation transcript:

1 Central Dogma Theory and Kinetic Models

2 A B DNA RNA PROTEIN Overview 𝑑[π‘ˆ] 𝑑𝑑 = ( 𝛼 1 (1+ [𝑉] Ξ² ) )-[U]
Central Dogma of Biology DNA RNA PROTEIN Kinetic Models A B 𝑑[π‘ˆ] 𝑑𝑑 = ( 𝛼 1 (1+ [𝑉] Ξ² ) )-[U] Computational Analysis of ODEs

3 How Modeling is used 𝑑[π‘ˆ] 𝑑𝑑 = ( 𝛼 1 (1+ [𝑉] Ξ² ) )-[U]
Experimental Implementation How Modeling is used 𝑉 < [π‘ˆ] Genetic Circuit Design Mathematical Modeling 𝑑[π‘ˆ] 𝑑𝑑 = ( 𝛼 1 (1+ [𝑉] Ξ² ) )-[U] 𝑑[𝑉] 𝑑𝑑 = ( 𝛼 2 (1+ [π‘ˆ] Ξ³ ) )-[V] [𝑉]> [π‘ˆ] This is an example of the engineering design cycle.

4 DNA RNA PROTEIN PROTEIN PROTEIN PROTEIN Central Dogma of Biology
ribosome TetR gfpmut3 lacI

5 Central Dogma of Biology
DNA RNA PROTEIN

6 A B Kinetic Models: Mass Action Kf KR At Equilibrium
βˆ’ 𝑑[𝐴] 𝑑𝑑 = 𝐾 𝑓 [𝐴] 𝐾 𝑓 = #π‘œπ‘“ π‘π‘œπ‘›π‘£π‘’π‘Ÿπ‘ π‘–π‘œπ‘›π‘  π‘œπ‘“ 𝐴 π‘‘π‘œ 𝐡 π‘†π‘’π‘π‘œπ‘›π‘‘ KR βˆ’ 𝑑[𝐡] 𝑑𝑑 = 𝐾 𝑅 [𝐡] 𝐾 𝑅 = #π‘œπ‘“ π‘π‘œπ‘›π‘£π‘’π‘Ÿπ‘ π‘–π‘œπ‘›π‘  π‘œπ‘“ 𝐡 π‘‘π‘œ 𝐴 π‘†π‘’π‘π‘œπ‘›π‘‘ At Equilibrium βˆ’ 𝑑 𝐡 𝑑𝑑 =βˆ’ 𝑑[𝐴] 𝑑𝑑 𝐾 π‘’π‘žπ‘’π‘–π‘™π‘–π‘π‘Ÿπ‘–π‘’π‘š = 𝐾 𝑓 𝐾 𝑅 = 𝐡 [𝐴] 𝐾 𝑓 𝐴 = 𝐾 𝑅 [𝐡]

7 A B Kinetic Models: Basic Example Kf KR 𝑑 𝐴 𝑑𝑑 = 𝐾 𝑅 [𝐡]- 𝐾 𝑓 [𝐴]
βˆ’ 𝑑[𝐴] 𝑑𝑑 = 𝐾 𝑓 [𝐴] βˆ’ 𝑑[𝐡] 𝑑𝑑 = 𝐾 𝑅 [𝐡] 𝐾 π‘’π‘žπ‘’π‘–π‘™π‘–π‘π‘Ÿπ‘–π‘’π‘š = 𝐾 𝑓 𝐾 𝑅 = 𝐡 [𝐴] Production Loss 𝑑 𝐴 𝑑𝑑 π‘™π‘œπ‘ π‘  = βˆ’πΎ 𝑓 [𝐴] 𝑑 𝐡 𝑑𝑑 π‘™π‘œπ‘ π‘  = βˆ’πΎ 𝑓 [𝐴] 𝑑 𝐴 𝑑𝑑 = 𝐾 𝑅 [𝐡]- 𝐾 𝑓 [𝐴] 𝑑 𝐡 𝑑𝑑 = 𝐾 𝑓 [𝐴]- 𝐾 𝑅 [𝐡] 𝑑 𝐴 𝑑𝑑 π‘ƒπ‘Ÿπ‘œπ‘‘π‘’π‘π‘‘π‘–π‘œπ‘› = 𝐾 𝑅 [𝐡] 𝑑 𝐡 𝑑𝑑 π‘ƒπ‘Ÿπ‘œπ‘‘π‘’π‘π‘‘π‘–π‘œπ‘› = 𝐾 𝑓 [𝐴]

8 Construction of a genetic toggle switch in Escherichia coli
Review of Construction of a genetic toggle switch in Escherichia coli Timothy S. Gardner, Charles R. Cantor & James J. Collins

9 1 A 01000001 . . . Z 01011010 1 1 or False True No Yes Memory Cells
A memory cell saves a 1 bit of memory. Can be combined to represent higher order data 1 A or . . . False True No Yes Z This 0 and 1 could represent true or Iterative Design process Voltage 1 Voltage 1

10 DNA RNA protein Design of Toggle Switch OR OR PLs1con promoter
Repressor X terminator OR terminator GFP Rbs B LacI Rbs E RBS1 PLtetO-1 promoter Ptrc-2 promoter Β (RNAP) (1mswΒ ) Β (RNAP) (1mswΒ ) Transcription Transcription RNA mRNA-GFP/lac repressor mRNA- TetR ribosome cITS is heat inducible zGFP is cloned as a second cistron Translation Translation OR protein TetR cIts lacI gfpmut3 Structures sizes are not scaled the same**

11 Kinetic Models: Genetic Toggle Switch
BIOLOGICAL DESCRIPTION MATHEMATICAL DESCRIPTION Transcription: DNA to RNA Transcription: DNA to RNA 𝑔 1𝑂𝑁 οƒ  π‘šπ‘…π‘π΄ 1 (rate constant = K1) 𝑔 2𝑂𝑁 οƒ  π‘šπ‘…π‘π΄ 2 (rate constant = K2) Translation: RNA to Protein Translation: RNA to Protein π‘šπ‘…π‘π΄ 1 οƒ  U + π‘šπ‘…π‘π΄ 1 (rate constant = K3) π‘šπ‘…π‘π΄ 2 οƒ  V + π‘šπ‘…π‘π΄ 2 (rate constant = K4) Macromolecular Degradation Macromolecular Degradation Ξ”Time U οƒ  0 (rate constant = K7) V οƒ  0 (rate constant = K8) NOTE THAT U AND V REPRESENT COMPETING REPRESSORS, NOT GFP (well U should be equal to GFP). π‘šπ‘…π‘π΄ 1 οƒ  0 (rate constant = K9) Ξ”Time π‘šπ‘…π‘π΄ 2 οƒ  0 (rate constant = K10) Circuit Design: Gene Repression Circuit Design: Gene Repression Ξ³*U + 𝑔 2𝑂𝑁 ↔ 𝑔 2𝑂𝐹𝐹 (rate constant = K5, K-5) Ξ²*V + 𝑔 1𝑂𝑁 ↔ 𝑔 1𝑂𝐹𝐹 (rate constant = K6, K-6)

12 Kinetic Models: Genetic Toggle Switch
𝑔 1𝑂𝑁 οƒ  π‘šπ‘…π‘π΄ 1 (rate constant = K1) 𝑔 2𝑂𝑁 οƒ  π‘šπ‘…π‘π΄ 2 (rate constant = K2) Transcription: DNA to RNA MATHEMATICAL DESCRIPTION π‘šπ‘…π‘π΄ 2 οƒ  V + π‘šπ‘…π‘π΄ 2 (rate constant = K4) π‘šπ‘…π‘π΄ 1 οƒ  U + π‘šπ‘…π‘π΄ 1 (rate constant = K3) Translation: RNA to Protein U οƒ  0 (rate constant = K7) V οƒ  0 (rate constant = K8) π‘šπ‘…π‘π΄ 1 οƒ  0 (rate constant = K9) π‘šπ‘…π‘π΄ 2 οƒ  0 (rate constant = K10) Macromolecular Degradation Ξ³*U + 𝑔 2𝑂𝑁 ↔ 𝑔 2𝑂𝐹𝐹 (rate constant = K5, K-5) Ξ²*V + 𝑔 1𝑂𝑁 ↔ 𝑔 1𝑂𝐹𝐹 (rate constant = K6, K-6) Circuit Design: Gene Repression NOTE THAT U AND V REPRESENT COMPETING REPRESSORS, NOT GFP (well U should be equal to GFP).

13 Modeling 𝛼 1 𝛼 2 MATHEMATICAL DESCRIPTION
𝑔 1𝑂𝑁 οƒ  π‘šπ‘…π‘π΄ 1 (rate constant = K1) 𝑔 2𝑂𝑁 οƒ  π‘šπ‘…π‘π΄ 2 (rate constant = K2) Transcription: DNA to RNA MATHEMATICAL DESCRIPTION π‘šπ‘…π‘π΄ 2 οƒ  V + π‘šπ‘…π‘π΄ 2 (rate constant = K4) π‘šπ‘…π‘π΄ 1 οƒ  U + π‘šπ‘…π‘π΄ 1 (rate constant = K3) Translation: RNA to Protein U οƒ  0 (rate constant = K7) V οƒ  0 (rate constant = K8) π‘šπ‘…π‘π΄ 1 οƒ  0 (rate constant = K9) π‘šπ‘…π‘π΄ 2 οƒ  0 (rate constant = K10) Macromolecular Degradation Ξ³*U + 𝑔 2𝑂𝑁 ↔ 𝑔 2𝑂𝐹𝐹 (rate constant = K5, K-5) Ξ²*V + 𝑔 1𝑂𝑁 ↔ 𝑔 1𝑂𝐹𝐹 (rate constant = K6, K-6) Circuit Design: Gene Repression Mass-Action Kinetics: 𝑑[π‘ˆ] 𝑑𝑑 = ( π‘˜1βˆ—π‘˜3βˆ— π‘˜ βˆ’6 βˆ—[ 𝑔 1𝑂𝐹𝐹 ] π‘˜9βˆ—π‘˜6 )*( 1 ( π‘˜1 π‘˜6 + [𝑉] Ξ² ) )-k7*[U] 𝛼 1 𝑑[π‘ˆ] 𝑑𝑑 = ( 𝛼 1 ( π‘˜1 π‘˜6 + [𝑉] Ξ² ) )-k7*[U] 𝑑[π‘ˆ] 𝑑𝑑 = ( 𝛼 1 (1+ [𝑉] Ξ² ) )-[U] 𝑑[𝑉] 𝑑𝑑 = ( π‘˜4βˆ—π‘˜2βˆ— π‘˜ βˆ’5 βˆ—[ 𝑔 2𝑂𝐹𝐹 ] π‘˜10βˆ—π‘˜5 )*( 1 ( π‘˜2 π‘˜5 + [π‘ˆ] Ξ³ ) )-k8*[V] Green= to make it dimensionless since it is used qualitatively First term- coop repression of constative promoters. Second term- decay 𝛼 2 𝑑[𝑉] 𝑑𝑑 = ( 𝛼 2 ( π‘˜2 π‘˜5 + [π‘ˆ] Ξ³ ) )-k8*[V] 𝑑[𝑉] 𝑑𝑑 = ( 𝛼 2 (1+ [π‘ˆ] Ξ³ ) )-[V]

14 Analysis Stable System Unstable System Time = 0 s Time = Ξ”t Time = 0 s
Transitioning, now these can be used to model spects of the genetic switch, like stability..

15 Analysis Stable System Unstable System Time = 0 s Time = Ξ”t Time = 0 s
We want something stable, unlike my memory freshman year when id cram for a test.

16 DESMOS!! π’š 𝟏 is Stable π’š 𝟐 π’š 𝟏 are Stable π’š 𝟐 is Stable Analysis 𝑦 1
𝑦 2 𝑦 2 𝑦 2 𝑦=π‘™π‘œπ‘”(𝛼 1 ) Ξ’= Ξ³=2 π’š 𝟏 is Stable π’š 𝟐 is Stable π’š 𝟐 π’š 𝟏 are Stable Ξ’= Ξ³=2 We want something stable, unlike my memory freshman year when id cram for a test. DESMOS!! π‘™π‘œπ‘”(𝛼 2 )=π‘₯

17 Computational Analysis of ODEs
RNA PROTEIN gfpmut3

18 INDUCERS Repressor: Inducer: If Induced: High State Low State lacI
IPTG aTc Temperature TetR cIts

19 Computational Analysis of ODEs

20 Closing Remarks β€œThe work on restriction nucleases not only permits us easily to construct recombinant DNA molecules and to analyze individual genes, but also has led us into the new era of synthetic biology where not only existing genes are described and analyzed but also new gene arrangements can be constructed and evaluated.” WacΕ‚aw Szybalski, 1973


Download ppt "Central Dogma Theory and Kinetic Models"

Similar presentations


Ads by Google