Download presentation
Presentation is loading. Please wait.
1
Volume 1, Issue 4, Pages 816-830 (December 2017)
High Thermoelectric Performance of Ag9GaSe6 Enabled by Low Cutoff Frequency of Acoustic Phonons Siqi Lin, Wen Li, Shasha Li, Xinyue Zhang, Zhiwei Chen, Yidong Xu, Yue Chen, Yanzhong Pei Joule Volume 1, Issue 4, Pages (December 2017) DOI: /j.joule Copyright © 2017 Elsevier Inc. Terms and Conditions
2
Joule 2017 1, DOI: ( /j.joule ) Copyright © 2017 Elsevier Inc. Terms and Conditions
3
Figure 1 Phase Characterization
(A–D) Crystal structure of Ag9GaSe6 in the high temperature (>281 K) phase (A). Powder X-ray diffraction patterns (B), the lattice parameter (C), and room temperature Hall carrier concentration (D) for Ag9Ga(Se1−xTex)6, indicating formation of a solid solution. Joule 2017 1, DOI: ( /j.joule ) Copyright © 2017 Elsevier Inc. Terms and Conditions
4
Figure 2 Microstructures of Ag9GaSe6
(A–D) SEM image (A) and the corresponding EDS composition mapping of Ag (B), Se (C), Ga (D) for Ag9GaSe6. Joule 2017 1, DOI: ( /j.joule ) Copyright © 2017 Elsevier Inc. Terms and Conditions
5
Figure 3 Optical Absorption
The normalized optical absorption versus photon energy at room temperature for Ag9Ga(Se1−xTex)6. Joule 2017 1, DOI: ( /j.joule ) Copyright © 2017 Elsevier Inc. Terms and Conditions
6
Figure 4 Molecular Dynamics Simulations
(A–C) Crystal structure of Ag9GaSe6 in the low-temperature phase projected onto the (100) plane (A) and the corresponding atomic trajectories at (B) 300 K and (C) 500 K, with Ag in blue, Ga in red, and Se in green. Joule 2017 1, DOI: ( /j.joule ) Copyright © 2017 Elsevier Inc. Terms and Conditions
7
Figure 5 Electron Density Distribution
(A and B) Electron density isosurface of 0.4 e/Å3 in Ag9GaSe6 (A) and the electron density distribution in an atomic plane crossing the Se-Ga-Se bonds (B). Joule 2017 1, DOI: ( /j.joule ) Copyright © 2017 Elsevier Inc. Terms and Conditions
8
Figure 6 Phonon Dispersion
(A and B) Calculated phonon dispersions (A) and the projected phonon density of states (B) for Ag9GaSe6. Joule 2017 1, DOI: ( /j.joule ) Copyright © 2017 Elsevier Inc. Terms and Conditions
9
Figure 7 Survey of ωm versus κL
Room temperature lattice thermal conductivity versus the cutoff frequency of acoustic phonons for semiconductors. Joule 2017 1, DOI: ( /j.joule ) Copyright © 2017 Elsevier Inc. Terms and Conditions
10
Figure 8 Thermal Properties
Temperature-dependent total thermal conductivity and lattice thermal conductivity for Ag9Ga(Se1−xTex)6, compared with the lattice thermal conductivity of Ga2Se3 with intrinsic vacancies.52 Joule 2017 1, DOI: ( /j.joule ) Copyright © 2017 Elsevier Inc. Terms and Conditions
11
Figure 9 Band Structure DFT band structure of Ag9GaSe6 in P213 phase.
Joule 2017 1, DOI: ( /j.joule ) Copyright © 2017 Elsevier Inc. Terms and Conditions
12
Figure 10 Electronic Transport Properties
(A–D) Temperature-dependent Hall mobility, μH (A), density-of-state effective mass, m* and deformation potential coefficient, Edef (B), Hall carrier concentration-dependent Seebeck coefficient (C), and Hall mobility (D) at 300, 500, and 800 K for Ag9GaSe6. The solid curves in (C) and (D) show the SPB model predictions. Joule 2017 1, DOI: ( /j.joule ) Copyright © 2017 Elsevier Inc. Terms and Conditions
13
Figure 11 Thermoelectric Transport Properties
(A–C) Temperature-dependent Seebeck coefficient (A), resistivity (B), and figure of merit, zT (C) for Ag9Ga(Se1−xTex)6. (D) The model-predicted zT versus carrier concentration at 300, 500, and 800 K for Ag9GaSe6. Joule 2017 1, DOI: ( /j.joule ) Copyright © 2017 Elsevier Inc. Terms and Conditions
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.