Presentation is loading. Please wait.

Presentation is loading. Please wait.

NTU DSD (Digital System Design) 2007

Similar presentations


Presentation on theme: "NTU DSD (Digital System Design) 2007"— Presentation transcript:

1 NTU DSD (Digital System Design) 2007
Boolean Algebra 2019/5/1 NTU DSD (Digital System Design) 2007

2 NOT Operation The NOT operation (or inverse, or complement operation) replaces a Boolean value with its complement: 0’ = 1 1’ = 0 A’ is read as NOT A or Complement A Boolean representation F(A) = A’ = A Truth Table A A’ A A’ 1 1 Inverter symbol 2019/5/1 Jackie Kan

3 AND Operation The AND operation is a function of two variables (A, B)
Boolean function representation F(A,B) = A • B = A * B = AB When both A and B are ‘1’, then F is ‘1’ • 0 = • 1 = • 0 = • 1 = 1 Truth Table A B Y A Y 1 1 B 1 1 1 and symbol 2019/5/1 Jackie Kan

4 OR Operation The OR operation is a function of two variables (A, B) A
Boolean function representation F(A,B) = A + B When either A or B are ‘1’, then F is ‘1’ = = = = 1 Truth Table A B Y A Y 1 1 1 1 B 1 1 1 or symbol 2019/5/1 Jackie Kan

5 XOR Operation XOR gate is usual in logic circuits that do binary addition/subtraction. Note that: F = A  B = A’B + AB’ A B Y 1 1 1 1 1 1 Y=A  B A B 2019/5/1 Jackie Kan

6 Boolean Functions More complex Boolean functions can be created by combining basic operations A A’ F(A,B) = A’ + B B A B A’ F(A,B) = A’ + B 1 1 1 1 1 1 1 1 1 2019/5/1 Jackie Kan

7 7408 – Quad 2-Input AND Gate IC
7432 – Quad 2-Input OR Gate IC 2019/5/1 Jackie Kan

8 7404 – Hex Inverter 7486 – Quad 2-Input Exclusive-OR Gate IC 2019/5/1
Jackie Kan

9 Laws and Theorems of Boolean Algebra
單變數定理(Single Variables Theorem) Identity X + 0 = X X * 1 = X Null Element X + 1 = 1 X * 0 = 0 Idempotent Theorem X + X = X X * X = X Theorem of Complementarity X + X’ = 1 X * X’ = 0 Involution Theorem (X’)’ = X 2019/5/1 Jackie Kan

10 Laws and Theorems of Boolean Algebra
多變數定理(Multiple Variables Theorem) Commutative law X + Y = Y + X XY = YX Associative law (X + Y) + Z = X + (Y + Z) = X + Y + Z (XY)Z = X(YZ) = XYZ Distributive law X(Y + Z) = XY + XZ X + (YZ) = (X + Y)(X + Z) Simplification theorems XY + XY’ = X (uniting) X + XY = X (absorption) (X + Y’)Y = XY (X + Y)(X + Y’) = X X(X + Y) = X XY’ + Y = X + Y Consensus theorem XY + X’Z + YZ = XY + X’Z (X + Y)(X’ + Z)(Y + Z) = (X + Y)(X’ + Z) 2019/5/1 Jackie Kan

11 Proof of The Consensus Theorem
XY + X’Z + YZ = XY + X’Z XY + X’Z + YZ = XY + X’Z + 1·YZ = XY + X’Z + (X + X’)YZ = XY + X’Z + XYZ + X’YZ = XY + XYZ + X’Z + X’YZ = XY(1 + Z) + X’Z(1 + Y) = XY·1 + X’Z·1 = XY + X’Z 2019/5/1 Jackie Kan

12 Boolean Algebra and Truth Table
利用真值表證明兩邊的式子 範例: 證明 x•(y + z) = (x • y) + (x • z) x y z y + z x •(y + z) x •y x •z (x • y) + (x•z) 1 x(y + z) = xy + xz 2019/5/1 Jackie Kan

13 Simplification / Minimization (簡化)
Simplification or Minimization tries to reduce the number of terms in a Boolean equation via use of basic theorems A simpler equation will mean: Less gates will be needed to implement the equation Could possibly mean a faster gate-level implementation Will use algebraic techniques at first for simplification Graphical method called K-maps Computer methods for simplification are widely used in industry 2019/5/1 Jackie Kan

14 Minimization Example Example: full adder's carry out function
Cout = A' B Cin + A B' Cin + A B Cin' + A B Cin = A' B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin = (A' + A) B Cin + A B' Cin + A B Cin' + A B Cin = (1) B Cin + A B' Cin + A B Cin' + A B Cin = B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin = B Cin + A (B' + B) Cin + A B Cin' + A B Cin = B Cin + A (1) Cin + A B Cin' + A B Cin = B Cin + A Cin + A B (Cin' + Cin) = B Cin + A Cin + A B (1) = B Cin + A Cin + A B 2019/5/1 Jackie Kan

15 Computation in Digital Logic Circuit
2019/5/1 NTU DSD (Digital System Design) 2007

16 Half Adder / Full Adder S = A’B + AB’ Cout = AB Full Adder 2019/5/1
Jackie Kan

17 Full Adder with Truth Table
S = A’B’Cin + A’BCin’ + ABCin + AB’Cin’ = A’(B’Cin + BCin’) + A(B’Cin’ + BCin) = A’(B ⊕ C) + A(B ⊕ C)’ = A⊕(B⊕Cin) = (A⊕B)⊕Cin Cout = A’BCin + AB’Cin + ABCin’ + ABCin = BCin + ACin + AB F = A  B = A’B + AB’ 2019/5/1 Jackie Kan

18 Circuit of Full Adder S = A⊕B⊕Cin = (A⊕ Cin)⊕B Cout = AB + BCin + ACin
2019/5/1 Jackie Kan

19 Behavior Level of Full Adder in Verilog Code
module full_adder (a, b, ci, s, co); input a, b, ci; output s, co; assign s = a ^ b ^ ci; assign co = (a & b) | (a & ci) | (b & ci); endmodule Gate Level of Full Adder in Verilog & VHDL Code LIBRARY ieee; USE ieee.std_logic_1164.ALL; ENTITY full_add IS PORT( a : IN STD_LOGIC; b : IN STD_LOGIC; c_in : IN STD_LOGIC; sum : OUT STD_LOGIC; c_out : OUT STD_LOGIC); END full_add; ARCHITECTURE behv OF full_add IS BEGIN sum <= a XOR b XOR c_in; c_out <= (a AND b) OR (c_in AND (a OR b)); END behv; module full_adder (a, b, ci, s, co); input a, b, ci; output s, co; wire NET1, NET2, NET3, NET4 ; xor ( NET1, a, b ); xor ( s , NET1, ci ); and ( NET2, a, b ); and ( NET3, a, ci ); and ( NET4, b, ci ); or ( co, NET2, NET3, NET4 ); endmodule 2019/5/1 Jackie Kan

20 Verilog Code of 4-Bit Adder
module full_adder (a, b, ci, s, co); input a, b, ci; output s, co; assign s = a ^ b ^ ci; assign co = (a & b) | (a & ci) | (b & ci); endmodule module f_fadder (a, b, s, co); input [3:0] a; input [3:0] b; output [3:0] s; output co; wire net1, net2, net3; full_adder f1(a[0],b[0],0,s[0],net1); full_adder f2(a[1],b[1],net1,s[1],net2); full_adder f3(a[2],b[2],net2,s[2],net3); full_adder f4(a[3],b[3],net3,s[3],co); 2019/5/1 Jackie Kan

21 Answer of Quiz 1 1) Please complete this truth table X Y Z XY Y’+Z’
XZ’ X’Y + XZ’ 1 2019/5/1 Jackie Kan 21

22 Answer of Quiz 2 2) Please design an 8-bit adder by drawing block diagram, schematic and related Verilog code 2019/5/1 Jackie Kan 22

23 Answer of Quiz 2 module full_adder (a, b, ci, s, co); input a, b, ci;
output s, co; assign s = a ^ b ^ ci; assign co = (a & b) | (a & ci) | (b & ci); endmodule module f_fadder (a, b, s, co); input [7:0] a; input [7:0] b; output [7:0] s; output co; wire net1, net2, net3, net4, net5, net6, net7; full_adder f1(a[0],b[0],0,s[0],net1); full_adder f2(a[1],b[1],net1,s[1],net2); full_adder f3(a[2],b[2],net2,s[2],net3); full_adder f4(a[3],b[3],net3,s[3],net4); full_adder f5(a[4],b[4],net4,s[4],net5); full_adder f6(a[5],b[5],net5,s[5],net6); full_adder f7(a[6],b[6],net6,s[6],net7); full_adder f8(a[7],b[7],net7,s[7],co); 2019/5/1 Jackie Kan 23

24 Basic Input / Output Device
Input Devices 2019/5/1 NTU DSD (Digital System Design) 2007

25 Logic Switch Circuit Logic Levels 1 Open Closed Open
High Input Resistance Logic Levels 1 Open Closed Open 2019/5/1 Jackie Kan

26 Normally Open / Closed Pushbutton
Press Release Press Release 1 1 Closed Open Closed Open Closed Open 2019/5/1 Jackie Kan

27 Example 4x4 Keypad 2019/5/1 Jackie Kan

28 Keyboard Scan 1 1 1 1 1 2019/5/1 Jackie Kan

29 Keyboard Scan 1 1 1 1 2019/5/1 Jackie Kan

30 PS/2 Keyboard 2019/5/1 Jackie Kan

31 Make Code & Break Code 2019/5/1
Jackie Kan

32 Button Bounce Analog Waveform Digital Waveform Debounce 2019/5/1
Jackie Kan


Download ppt "NTU DSD (Digital System Design) 2007"

Similar presentations


Ads by Google