Presentation is loading. Please wait.

Presentation is loading. Please wait.

Rigid Diatomic molecule

Similar presentations


Presentation on theme: "Rigid Diatomic molecule"— Presentation transcript:

1 Rigid Diatomic molecule
I = r  = m1m2/(m1+m2) B (MHz) = /I (u Å 2) B (cm-1) = /I (u A2) Harry Kroto 2004

2 Rotational Spectroscopy of Linear Molecules
F(J) = BJ(J+1) 0 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… Harry Kroto 2004

3 Rotational Spectroscopy of Linear Molecules
F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 1 2B Harry Kroto 2004

4 Rotational Spectroscopy of Linear Molecules
F(J) = BJ(J+1) 0 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 2 6B 1 2B Harry Kroto 2004

5 Rotational Spectroscopy of Linear Molecules
F(J) = BJ(J+1) 0 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 3 12B 2 6B 1 2B Harry Kroto 2004

6 Rotational Spectroscopy of Linear Molecules
F(J) = BJ(J+1) 0 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 4 20B 3 12B 2 6B 1 2B Harry Kroto 2004

7 Rotational Spectroscopy of Linear Molecules
F(J) = BJ(J+1) 0 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 5 30B 4 20B 3 12B 2 6B 1 2B Harry Kroto 2004

8 Rotational Spectroscopy of Linear Molecules
F(J) = BJ(J+1) 0 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B Harry Kroto 2004

9 Rotational Spectroscopy of Linear Molecules
J 7 56B F(J) = BJ(J+1) 0 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B Harry Kroto 2004

10 A Classical Description > E = T + V E = ½I2 V=0
B QM description > the Hamiltonian H J  = E J  H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004

11 Rotational Spectroscopy of Linear Molecules
J 7 56B F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B Harry Kroto 2004

12 Rotational Spectroscopy of Linear Molecules
J 7 56B F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B Harry Kroto 2004

13 Rotational Spectroscopy of Linear Molecules
J 7 56B F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B Harry Kroto 2004

14 Rotational Spectroscopy of Linear Molecules
J 7 56B F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B Harry Kroto 2004

15 Rotational Spectroscopy of Linear Molecules
J 7 56B F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B Harry Kroto 2004

16 Rotational Spectroscopy of Linear Molecules
J 7 56B F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B Harry Kroto 2004

17 Rotational Spectroscopy of Linear Molecules
J 7 56B F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B Harry Kroto 2004

18 Rotational Spectroscopy of Linear Molecules
J 7 56B F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B Harry Kroto 2004

19 A Classical Description > E = T + V E = ½I2 V=0
B QM description > the Hamiltonian H J  = E J  H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F (J) = 2B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004

20 B(J+1)(J+2) J+1 BJ(J+1) J F(J) = 2B(J+1) Harry Kroto 2004

21 Rotational Spectroscopy of Linear Molecules
J 7 56B F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 14B 6 42B 12B 5 30B 10B 4 20B 8B 3 12B 6B 2 6B 4B 1 2B 2B Harry Kroto 2004

22 A Classical Description > E = T + V E = ½I2 V=0
B QM description > the Hamiltonian H J  = E J  H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004

23 Far infrared rotational spectrum of CO J= 12 15 20B
10 Far infrared rotational spectrum of CO J= 12 15 20B 23.0 cm-1 61.5 cm-1 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = B = cm-1 ( 50/3.85 = = 13 so line at 50cm-1 is J=12 B = / I I = / B I = 8.76 uA2 I =  r2  = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = = r2 r = 1.277½ = A ( acc B value 1.921) Harry Kroto 2004

24 Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 (
10 J= 12 15 20B 23.0 cm-1 61.5 cm-1 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = B = cm-1 ( 50/3.85 = = 13 so line at 50cm-1 is J=12 B = / I I = / B I = 8.76 uA2 I =  r2  = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = = r2 r = 1.277½ = A ( acc B value 1.921) Harry Kroto 2004

25

26 My ABC System of Spectroscopy
Harry Kroto 2004

27 Nuclear Energies H + H E(r) Chemical Energies r  v=3 2 1
r  Harry Kroto 2004

28 Rotational Spectroscopy
Harry Kroto 2004

29 Nuclear Energies H + H E(r) Chemical Energies Rotational levels r 
r  Harry Kroto 2004

30 A Classical Description > E = T + V E = ½I2 V=0
B QM description > the Hamiltonian H J  = E J  H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004

31 m2 m1 Rotational Spectra Linear Molecules Rigid Diatomic molecule
E = ½I2 Rigid Diatomic molecule Angular velocity  m2 m1 I = r2 = m1m2/(m1+m2) Harry Kroto 2004

32 Rotational Energy Linear Diatomic Molecules
Rigid Diatomic molecule Angular velocity  m2 Rotational Energy Linear Diatomic Molecules E = ½I2 m1 I = r2 = m1m2/(m1+m2) Harry Kroto 2004

33 A Classical Description > E = T + V E = ½I2 V=0
B QM description > the Hamiltonian H J  = E J  H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004

34 Rotational Spectra Linear Molecules
E = ½I2  J2/2I (J = I ) E = ½ mv2  p2/2m (p = mv) H = J2/2I (Note V= 0) Harry Kroto 2004

35 Rotational Spectra Linear Molecules
E = ½I2  J2/2I (J = I ) E = ½ mv2  p2/2m (p = mv) H = J2/2I (Note V= 0) Harry Kroto 2004

36 H = J2/2I J J2 J  = ħ2 J(J+1) E(J) = (ħ2/2I) J(J+1)
F(J) = B J(J+1) B = ħ2/h2I MHz B = ħ2/hc2I cm-1 J J2 J   J* J2 Jd Harry Kroto 2004

37 A Classical Description > E = T + V E = ½I2 V=0
B QM description > the Hamiltonian H J  = E J  H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004

38 H = J2/2I J J2 J  = ħ2 J(J+1) E(J) = (ħ2/2I) J(J+1)
F(J) = B J(J+1) B = ħ2/h2I MHz B = ħ2/hc2I cm-1 J J2 J   J* J2 Jd Harry Kroto 2004

39 H = J2/2I J J2 J  = ħ2 J(J+1) E(J) = (ħ2/2I) J(J+1)
F(J) = B J(J+1) B = ħ2/h2I MHz B = ħ2/hc2I cm-1 J J2 J   J* J2 Jd Harry Kroto 2004

40 H = J2/2I J J2 J  = ħ2 J(J+1) E(J) = (ħ2/2I) J(J+1)
F(J) = B J(J+1) B = ħ2/h2I MHz B = ħ2/hc2I cm-1 J J2 J   J* J2 Jd Harry Kroto 2004

41 H = J2/2I J J2 J  = ħ2 J(J+1) E(J) = (ħ2/2I) J(J+1)
F(J) = B J(J+1) B = ħ2/h2I MHz B = ħ2/hc2I cm-1 J J2 J   J* J2 Jd Harry Kroto 2004

42 Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 (
Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = B = cm-1 ( 50/3.85 = = 13 so line at 50cm-1 is J=12 B = / I I = / B I = 8.76 uA2 I =  r2  = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = = r2 r = 1.277½ = A ( acc B value 1.921) Harry Kroto 2004

43 A Classical Description > E = T + V E = ½I2 V=0
B QM description > the Hamiltonian H J  = E J  H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004

44 Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 (
Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = B = cm-1 ( 50/3.85 = = 13 so line at 50cm-1 is J=12 B = / I I = / B I = 8.76 uA2 I =  r2  = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = = r2 r = 1.277½ = A ( acc B value 1.921) Harry Kroto 2004

45 Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 (
J= 12 23.0 cm-1 61.5 cm-1 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = B = cm-1 ( 50/3.85 = = 13 so line at 50cm-1 is J=12 B = / I I = / B I = 8.76 uA2 I =  r2  = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = = r2 r = 1.277½ = A ( acc B value 1.921) Harry Kroto 2004

46 Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 (
10 15 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = B = cm-1 ( 50/3.85 = = 13 so line at 50cm-1 is J=12 B = / I I = / B I = 8.76 uA2 I =  r2  = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = = r2 r = 1.277½ = A ( acc B value 1.921) Harry Kroto 2004

47 A Classical Description > E = T + V E = ½I2 V=0
B QM description > the Hamiltonian H J  = E J  H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004

48 Radiotelescope in Canada
Harry Kroto 2004

49 A Classical Description > E = T + V E = ½I2 V=0
B QM description > the Hamiltonian H J  = E J  H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004

50 B(J+1)(J+2) – D(J+1)2(J+2)2 J+1 BJ(J+1) – DJ2(J+1)2 J
F(J) = 2B(J+1) – 4D(J+1)3 Harry Kroto 2004

51 A Classical Description > E = T + V E = ½I2 V=0
B QM description > the Hamiltonian H J  = E J  H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004

52 Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 (
10 15 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = B = cm-1 ( 50/3.85 = = 13 so line at 50cm-1 is J=12 B = / I I = / B I = 8.76 uA2 I =  r2  = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = = r2 r = 1.277½ = A ( acc B value 1.921) Harry Kroto 2004

53 Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 (
10 15 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = B = cm-1 ( 50/3.85 = = 13 so line at 50cm-1 is J=12 B = / I I = / B I = 8.76 uA2 I =  r2  = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = = r2 r = 1.277½ = A ( acc B value 1.921) Harry Kroto 2004

54 Harry Kroto 2004


Download ppt "Rigid Diatomic molecule"

Similar presentations


Ads by Google