Presentation is loading. Please wait.

Presentation is loading. Please wait.

Membrane Function Bulk Transport Cell Signaling Membrane Function

Similar presentations


Presentation on theme: "Membrane Function Bulk Transport Cell Signaling Membrane Function"— Presentation transcript:

1 Membrane Function Bulk Transport Cell Signaling Membrane Function
Passive Transport Osmosis and Water Balance Active Transport Bulk Transport Exo- and Endocytosis Cell Signaling

2 Membrane Function Working cells must control the flow of materials to and from the environment. A cell membrane or wrapper made of phospholipids is relatively impermeable Proteins embedded in the membrane provide for selective permeability and transport of materials into and out of the cell, among other things Membrane Selectivity

3 Cell or Plasma Membrane
Phospholipid bilayer

4 Extracellular fluid (watery environment) Cholesterol Polar head of
phospholipid molecule Cholesterol Glycolipid Glycoprotein Carbohydrate of glycocalyx Outward- facing layer of phospholipids Integral proteins Filament of cytoskeleton Inward-facing layer of phospholipids Bimolecular lipid layer containing proteins Peripheral proteins Nonpolar tail of phospholipid molecule Cytoplasm (watery environment) Figure 3.3

5 Functions of Membrane Proteins
Figure 5.11

6 The Working Cell: Membrane Function
Passive Transport Osmosis and Water Balance Active Transport Bulk Transport Exo- and Endocytosis Cell Signaling

7 Passive Transport: Diffusion Across Membranes
Molecules contain heat energy. They vibrate and wander randomly. Diffusion is movement of molecules from regions of high concentration to low concentration Molecules tend to spread into the available space. Diffusion Across A Membrane by passive transport Simple diffusion of small or hydrophobic molecules Facilitated diffusion of larger and polar molecules Diffusion

8 Examples of Passive Transport Across a Phospholipid Bilayer

9 The Working Cell: Membrane Function
Passive Transport Osmosis and Water Balance Active Transport Bulk Transport Exo- and Endocytosis Cell Signaling

10 Osmosis and Water Balance in Cells
Osmosis is the facilitated transport of water across a selectively permeable membrane. Water moves across a membrane from high concentration (high purity) to low concentration (low purity)

11 Terms Used to Compare the Purity of Water Solutions
A hypertonic solution Has a higher concentration of dissolved substances (solute) like salts, proteins, etc. 5% salt 1% salt A hypotonic solution Has a lower concentration of dissolved substances (solute) 1% salt 5% salt An isotonic solution Has an equal concentration of dissolved substances (solute). 1% salt 1% salt

12 Cells Must Regulate Salt and Water Balance
(a) Isotonic solutions (b) Hypertonic solutions (c) Hypotonic solutions Cells retain their normal size and shape in isotonic solutions (same solute/water concentration as inside cells; water moves in and out). Cells lose water by osmosis and shrink in a hypertonic solution (contains a higher concentration of solutes than are present inside the cells). Cells take on water by osmosis until they become bloated and burst (lyse) in a hypotonic solution (contains a lower concentration of solutes than are present in cells). Turgid Elodea Plasmolysis

13 The Working Cell: Membrane Function
Passive Transport Osmosis and Water Balance Active Transport Bulk Transport Exo- and Endocytosis Cell Signaling

14 Active Transport: The Pumping of Molecules Across Membranes
Active transport is the movement of molecules from low concentration to high concentration, against a concentration gradient Active transport requires energy to pump molecules across a membrane, into more a more crowded space Concentration gradient Active Transport

15 The Sodium-Potassium Pump Creates a Gradient Using ATP
Extracellular fluid Na+ Na+-K+ pump ATP-binding site K+ Na+ bound Cytoplasm 1 Cytoplasmic Na+ binds to pump protein. P ATP K+ released ADP K+ is released from the pump protein and Na+ sites are ready to bind Na+ again. The cycle repeats. 6 Binding of Na+ promotes phosphorylation of the protein by ATP. 2 Na+ released K+ bound P Pi K+ 5 K+ binding triggers release of the phosphate. Pump protein returns to its original conformation. Phosphorylation causes the protein to change shape, expelling Na+ to the outside. 3 P 4 Extracellular K+ binds to pump protein.

16 Active Transport Can Create Electrical AND Chemical Gradients
Both chemical and electrical gradients represent stored energy, and can be used to perform work (e.g. pumping something through the membrane by co-transport, or making ATP)

17 The Working Cell: Membrane Function
Passive Transport Osmosis and Water Balance Active Transport Bulk Transport Exo- and Endocytosis Cell Signaling

18 Bulk Transport: Exocytosis and Endocytosis
Dumping molecules out of the cell (export) Exocytosis and Endocytosis Introduction

19 Bulk Transport: Exocytosis and Endocytosis
Bringing molecules into the cell (import) Includes pinocytosis, phagocytosis, and receptor-mediated endocytosis Pinocytosis: cell “drinking” Phagocytosis: cell “eating”

20 Receptor-mediated endocytosis

21 The Working Cell: Membrane Function
Passive Transport Osmosis and Water Balance Active Transport Bulk Transport Exo- and Endocytosis Cell Signaling

22 The Role of Membranes in Cell Signaling
Cellular communication Begins with the reception of an extracellular signal. The signal is transduced or passed across the membrane A response is elicited from the transduced signal

23 The Working Cell: Membrane Function
Passive Transport Osmosis and Water Balance Active Transport Bulk Transport Exo- and Endocytosis Cell Signaling


Download ppt "Membrane Function Bulk Transport Cell Signaling Membrane Function"

Similar presentations


Ads by Google