Presentation is loading. Please wait.

Presentation is loading. Please wait.

Who accelerate cosmic rays

Similar presentations


Presentation on theme: "Who accelerate cosmic rays"— Presentation transcript:

1 Who accelerate cosmic rays
Koyama et al.(1995) Discovery of sync. X-rays from the shell of SN 1006 Koyama et al. (1997):Sync. X-rays Aharonian et al. (2004):             VHE gamma-rays SNR RXJ is an accelerator! スペクトルからは磁場強度のみ、構造までみたければ … 高空間分解能観測 :Chandra (0.5 arcsec) 偏光観測 :将来の観測機器に期待

2 1.4. Spectral Fitting Non-thermal! spectrum Hard No line SRCUT model
(keV) power-law exponential cutoff Sync. emission from electrons nrolloff = 5x1017Hz B 10mG Emax 100TeV 2 Reynolds & Keohane (1999) a = (fixed) (Allen et al. 2001) nrolloff = 2.6 (1.9 – 3.3) x 1017 Hz Flux = 1.8 x10-12 ergs cm-2s-1

3 1.5. Many young historical SNRs have thin filaments with sync. X-rays
Cas A(SN1680) Kepler(SN1604) Tycho(SN1572) SN1006 RCW 86 (SN184) (Bamba et al. 2005)

4 Chandra: Thin Filaments (Bamba et al.)
In this region, electron returns back (small: quick, large: slow) The Efficiency of Particle  Acceleration NR: High ER: Low? A ping-pong ball gets speed (energy) by a rally in a moving wall Efficiency particle acceleration Thermal plasma shock

5 The scale length vs. radius
2 5 10 50 Radius of SNR (pc) 10-2 10-1 1 Scale length (pc) downstream upstream R/10 30 Dor C RCW 86 Cas A SN 1006 Tycho R/1000 Kepler The scale length is ~ % of the radius.

6 perpendicular B or parallel B ?
Why are filaments so thin? ….. Small diffusion in direction to shock normal! perpendicular B or parallel B ? Diffusion only occurs along the B perpendicular! ordered or turbulent B ? turbulent → strongly scattered   → hardly go downstream → staying long around shocks turbulent B high effic. (equipartition) First quantitative image ! shock Emax of electron TeV The angle: > 85 deg. The strength: 10 – 80 mG up down

7 90° Magnetic field Up Stream Shock Front Electron Trajectory
Down Stream

8 another scenario very strong parallel B
(Berezhko et al. 2004) Strong B makes the gyro radius small → diffusion becomes small B ~ 100 – 400 mG shock up down Turbulent magnetic field (Bohm limit) Very efficient acceleration (equipartition) Anyway, First estimation of magnetic field structure

9 未知の超新星残骸探査 硬X線探査 今までのSNR探査: 電波中心 (265個: Green et al. 2006) SN1006
1GHzでの表面輝度 (10-22W m-2Hz-1sr-1) SN1006 銀河面からの距離 |b| (degree) 電波サーベイは銀河面近くで弱い SN1006型は電波で暗い 硬X線探査

10 ASCAによる無バイアス銀河面探査 探査領域: 硬X線無バイアス探査としては |l| < 45o, |b| < 0.4o
おそらく最大・最高感度探査 複数の未同定宇宙線加速SNR候補を発見 G G G Bamba et al. (2003b) このようなSNR … ~20個?

11 ASCA Galactic Plane Survey

12 2. HESS sources New accelerator candidates? :XIS Mapping Sgr A*
HESS J HESS J HESS J HESS J HESS J HESS J HESS J HESS J Aharonian et al. 2005 New accelerator candidates? :XIS Mapping

13 HESS + New SNRs

14 (1) RXJ /SN1006 : Hard Tail  Prepared by T.Takahashi, J.Hiraga, K. Nakazawa、 Y.Uchiyama Hard band ACIS-I 3-5 keV True TeV emitter  ASCA GIS Synchrotron X-ray Uchiyama et al. Aharonian et al. SN1006 Γ~ 2.7 : the standard acceleration theory. RXJ G~2.3 : hard to explain

15 Target list Name ext. flux* counterpart? viewing 1303-632 10 none
(HESS J…) (‘) none none - Oct.3 PSR J ? - Oct.3 G G Oct.19 W33? PSR ? - Oct.24 G AX J *: ergs/cm2/s above 200 GeV

16 Assumption: RX J1713 and HESS sources have same spectra
Who are they? XIS spectra and image detection with HXD? Assumption: RX J1713 and HESS sources have same spectra Name F2-10 keV x10-12 x10-12 x10-12 x10-12 detectable with XIS 50ks ASCA survey: 2x10-12ergs cm-2s-1 with 50ks or strong upper limit… If they are not RX J1713s. Then dark accelerator !?

17 Suzaku will catch the nature of TeV unID sources
2.5. Suzaku observation of HESS unID sources HESS J HESS J pos. of HESS J1804 (cal source) (cal source) 2 – 7 keV 2 – 7 keV strong upper limit ! (Matumoto et al.2006 ) dim counterpart ? (Bamba et al. 2006) Suzaku will catch the nature of TeV unID sources

18 Their nature is still unknown, but wide band obs. will solve it !
2.6. One possible scenario for TeV unID sources: Emission from SNRs in various phases young SNRs (Yamazaki et al. astro-ph/ ) large shock speed both e and p are accelerated strong synchrotron X-rays old SNRs small shock speed electrons are deccelerated no emission TeV unIDs are old SNRs colliding with MCs? Their nature is still unknown, but wide band obs. will solve it ! SNRs colliding with MCs amount of targets strong p0 decay

19 FTeV/FX ratio target FTeV/FX Crab (PWN) ~2.7e-3 RX J1713 (SNR) ~0.06
HESS J ~8 HESS J >55? HESS unID sourcesは 本当にproton acceleratorかもしれない!


Download ppt "Who accelerate cosmic rays"

Similar presentations


Ads by Google