Download presentation
Presentation is loading. Please wait.
This is a modal window.
Beginning of dialog window. Escape will cancel and close the window.
End of dialog window.
1
VME Bus Vinay Shet
2
Introduction VME - Versa Module Europa
Flexible, open-ended bus system using the Eurocard Standard Introduced by Motorola, Mostek and Signetics in 1981 It was intended to be a flexible environment, supporting a variety of computing intensive tasks. Defined in IEEE standard
3
Introduction In 1981, Motorola decided to second source the MC68000 microprocessor chip Motorola proposed the use of VERSA bus backplane However, the others rejected this proposal saying that the VERSA bus board size was much too large In response, Motorola proposed that they use the (much smaller) Eurocard board instead
4
Introduction VERSA bus electrical specifications and Eurocard mechanical specifications
5
VME bus features Master / slave architecture
Functional unit called MASTER Functional unit called SLAVE Data Since multiple Masters can reside on the bus, it is a MULTIPROCESSING bus Can take from 1 to 21 Masters
6
VME bus features Advantages?
Asynchronous bus – there is no central synchronization clock (uses handshaking protocol) MASTER SLAVE Data Address MASTER SLAVE Control signals MASTER SLAVE DTACK Advantages?
7
VME bus features Addressing
Provides variety of address spaces and data widths – Dynamic address and data sizing Makes no distinction between IO space and Memory space Uses three address spaces 16-bit (A16) 24-bit (A24) 32-bit (A32) 6 bit address modifier code is used to distinguish between these address spaces
8
VME bus features Data Transfer
Provides variety of data widths – Dynamic data sizing Data transfer sizes can be 8-bit 16-bit 32-bit Data transfer cycles can be Single Cycle or Block Transfer Single Cycle – Address is sent with each data transfer Block Transfer – one address is sent with multiple data transfers
9
VME bus features Data Transfer Cycles
Single cycles – D8(O), D8(EO), D16, D32 and MD32 Block Transfer – BLT, MBLT, A40BLT Mixing different address and data widths You can use different address and data widths based on the application Common examples A16/D8(O) – simple IO boards A32/D32 – high performance modules
10
VME bus features Data Transfer Speed Topology Bus Cycle Maximum Speed
VMEbus IEEE-1014 BLT 40 Mbyte/sec VME64 MBLT 80 Mbyte/sec VME64x 2eVME 160 Mbyte/sec VME320 2eSST Mbyte/sec
11
VME bus features Byte Ordering VME bus does not specify byte ordering
Most devices use the Motorola model which is big endian, but the Digital model is little endian Two models are provided to accomplish byte swapping VMS bus adapter Software interfaces
12
VME bus features Interrupts Vectors Interrupt Priorities
VME bus interrupt vectors range from 0x00 to 0xFF, inclusive. The bus adapter consumes some of these adapters and area not available to the device drivers Interrupt Priorities Seven interrupt priorities (IRQ1 through IRQ 7 – IRQ7 highest priority)
13
VME bus features Bus Arbitration
With single master, life is easy – when system boots, the master asks for the bus, gets it and keeps it. VME provides 4 separate bus request levels Two or more masters can request the bus at the same time on the same request level If multiple requests on same level then proximity to slot one is used to determine who will get the bus
14
VME bus features Bus Arbitration
E.g M(3) and M(7) request on level 1 at same time M(3) will get the bus first M(7) has to wait until M(3) has finished and then assuming no one form slot 1 – 6 requests then M(7) gets bus Arbitration is done by the System Controller – always resides in slot 1
15
VME bus features Bus Arbitration Arbitration can be set up in
Priority mode Round robin mode Single level mode Releasing the bus RWD – Release when done ROR – Release on request (usually implemented in H/W hence faster)
16
VME bus features Bus Arbitration Fairness
In heavily loaded system, first four boards can hog the bus and starve the rest. To prevent this – bus requesters are programmed to request bus only when bus request lines are not asserted – Fairness This ensures that all boards – even in a heavily loaded system – eventually get the bus
17
VME bus features Live insertion capability
Electronic module can be removed and inserted in the system when the power is on Also known as Hot Swap Typical Board de-allocation Process System admin software disables new connections to board’s device driver System waits for all connections to terminate or forces existing connections to terminate
18
VME bus features VMEbus System Controller VMEbus Daisy Chains
Resides in slot 1 Bus Arbitration Provides 16 MHz system clock (SYSCLK) Provides the interrupt acknowledge (IACK) daisy chain driver VMEbus Daisy Chains Five daisy chain signals on VME bus – four used for bus arbitration and one for interrupt acknowledge Bus arbitration done using 4 bus request lines and 4 bus grant in/out lines
19
VME bus features VME bus standard specifies two board sizes
3U – 100mm x 160mm – one connector P1 6U – 233.5mm x 160mm – two connectors P1, P2 VME bus P2/J2 user defined pins
20
Asynchronous, with both multiplexed and non-multiplexed bus cycles.
VME bus features Summary of features Item Specification Notes Architecture Master/slave Transfer Mechanism Asynchronous, with both multiplexed and non-multiplexed bus cycles. There is no central synchronization clock. Addressing Range 16, 24, 32, 40 or 64-bit Address path width selected dynamically. Data Path Width 8, 16, 24, 32 or 64-bit Data path width selected dynamically. Data Transfer Rate Mbyte/sec See Table
21
VME bus features Summary of features Interrupts 7 levels
Priority interrupt system with 8, 16 or 32-bit STATUS/ID (interrupt vector). Multiprocessing Capability processors Flexible bus arbitration with true peer-to-peer multiprocessing. Item Specification Notes Architecture Master/slave Transfer Mechanism Asynchronous, with both multiplexed and non-multiplexed bus cycles. There is no central synchronization clock. Addressing Range 16, 24, 32, 40 or 64-bit Address path width selected dynamically.
22
VME bus features Summary of features Data Path Width
8, 16, 24, 32 or 64-bit Data path width selected dynamically. Data Transfer Rate Mbyte/sec See Table Interrupts 7 levels Priority interrupt system with 8, 16 or 32-bit STATUS/ID (interrupt vector). Multiprocessing Capability processors Flexible bus arbitration with true peer-to-peer multiprocessing. Live Insertion Capability Yes Using optional standards. Control & Status Registers (Plug & Play Support) Under VME64 & VME64x
23
VME bus features Summary of features Mechanical Standard
3U single-height Eurocard 6U double-height Eurocard 9U (optional standard) 160 x 100 mm Eurocard 160 x 233 mm Eurocard 367 x 400 mm Eurocard User Defined I/O Yes Through the Front Panel and P2/J2 User Defined Pins Conduction Cooled Version (Military) Under IEEE Maximum Number of Card Slots in Backplane 21 The number of cards is limited by how many boards, located on 0.8" centers, can be placed into a 19" rack panel.
24
Original VME bus spec MASTER/SLAVE architecture Asynchronous bus
Variable speed handshaking protocol Non-multiplexed bus Addressing range between 16 and 32 bits Data path widths of between 8 and 32 bits Bandwidths of up to 40 Mbyte/sec Multiprocessing capability Interrupt capability
25
Original VME bus spec Wide variety of mechanical hardware based on the IEEE 1101 standard Up to 21 card slots can be used in a single backplane
26
VME64 features Larger, 64-bit data path for 6U boards
Larger, 64-bit addressing range for 6U boards 32-bit data and 40 bit addressing modes for 3U boards Twice the bandwidth (up to 80Mbytes/sec) Lower noise connector system Cycle retry capability Bus LOCK cycle First slot detector
27
VME64 features Automatic plug-n-play features
Configuration ROM / CSR capability Re-definition of SERCLK and SERDAT pins
28
VME64x features A new 160 pin connector family
A 95 pin P0/J0 connector 3.3 V power supply pins More +5 VDC power supply pins Geographical addressing Higher bandwidth bus cycles 141 more user defined pins Rear plug-in units Live insertion / hot swap capability Injector / ejector locking handles
29
VME bus software VME bus has the lasrgest software base of any computer architecture There are 103 known commercial operating systems running on VME bus – other propreitary Operating systems are also known to exist
30
VME bus architecture VME architecture is usually described interms of its functional modules See table 3
31
VME bus architecture Various functional units communicate with each other over five sub-buses See table 4
32
VME bus architecture Bus cycles are impressed upon the sub-buses
The standard VME bus cycle is the READ/WRITE cycle. See table 5
33
Multi Crate operation Max size of VME bus backplanes is 21 slots
If more slots are needed there are two ways of achieving this Use a VME bus-to-VME bus bridge cardset Use a pair of “reflective memory” card
34
Applications Industrial Control Military Aerospace Transportation
Telecom Simulation Medical High energy physics General business
35
Links IEEE 1014-1987 standard specification www.vita.com/vmefaq
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.