Presentation is loading. Please wait.

Presentation is loading. Please wait.

PHZ 6358 Fall 2011 The Modeling of the Underlying Event Rick Field

Similar presentations


Presentation on theme: "PHZ 6358 Fall 2011 The Modeling of the Underlying Event Rick Field"— Presentation transcript:

1 PHZ 6358 Fall 2011 The Modeling of the Underlying Event Rick Field
University of Florida Outline of Talk Studying the “underlying event” at the Tevatron. The CDF PYTHIA 6.2 tunes. University of Florida November 2011 How well did we do at predicting the behavior of the “underlying event” at 900 GeV and 7 TeV? The “underlying event” in Z-boson production at the Tevatron and the LHC. Homework Assignment (optional). PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

2 QCD Monte-Carlo Models: High Transverse Momentum Jets
“Hard Scattering” Component “Underlying Event” Start with the perturbative 2-to-2 (or sometimes 2-to-3) parton-parton scattering and add initial and final-state gluon radiation (in the leading log approximation or modified leading log approximation). The “underlying event” consists of the “beam-beam remnants” and from particles arising from soft or semi-soft multiple parton interactions (MPI). Of course the outgoing colored partons fragment into hadron “jet” and inevitably “underlying event” observables receive contributions from initial and final-state radiation. The “underlying event” is an unavoidable background to most collider observables and having good understand of it leads to more precise collider measurements! PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

3 Proton-Proton Collisions
stot = sEL + sIN stot = sEL + sSD + sDD + sHC ND “Inelastic Non-Diffractive Component” The “hard core” component contains both “hard” and “soft” collisions. PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

4 The Inelastic Non-Diffractive Cross-Section
Occasionally one of the parton-parton collisions is hard (pT > ≈2 GeV/c) Majority of “min-bias” events! “Semi-hard” parton-parton collision (pT < ≈2 GeV/c) + + + + … Multiple-parton interactions (MPI)! PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

5 The “Underlying Event”
Select inelastic non-diffractive events that contain a hard scattering Hard parton-parton collisions is hard (pT > ≈2 GeV/c) 1/(pT)4→ 1/(pT2+pT02)2 “Semi-hard” parton-parton collision (pT < ≈2 GeV/c) The “underlying-event” (UE)! + + + … Given that you have one hard scattering it is more probable to have MPI! Hence, the UE has more activity than “min-bias”. Multiple-parton interactions (MPI)! PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

6 Model of sND + + + + … 1/(pT)4→ 1/(pT2+pT02)2
Allow leading hard scattering to go to zero pT with same cut-off as the MPI! Model of the inelastic non-diffractive cross section! 1/(pT)4→ 1/(pT2+pT02)2 “Semi-hard” parton-parton collision (pT < ≈2 GeV/c) + + + + … Multiple-parton interactions (MPI)! PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

7 MPI, Pile-Up, and Overlap
MPI: Multiple Parton Interactions MPI: Additional 2-to-2 parton-parton scatterings within a single hadron-hadron collision. Pile-Up Proton Proton Proton Proton Interaction Region Dz Pile-Up: More than one hadron-hadron collision in the beam crossing. Overlap Overlap: An experimental timing issue where a hadron-hadron collision from the next beam crossing gets included in the hadron-hadron collision from the current beam crossing because the next crossing happened before the event could be read out. PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

8 Traditional Approach CDF Run 1 Analysis Charged Particle Df Correlations PT > PTmin |h| < hcut Leading Calorimeter Jet or Leading Charged Particle Jet or Leading Charged Particle or Z-Boson “Transverse” region very sensitive to the “underlying event”! Look at charged particle correlations in the azimuthal angle Df relative to a leading object (i.e. CaloJet#1, ChgJet#1, PTmax, Z-boson). For CDF PTmin = 0.5 GeV/c hcut = 1. Define |Df| < 60o as “Toward”, 60o < |Df| < 120o as “Transverse”, and |Df| > 120o as “Away”. All three regions have the same area in h-f space, Dh×Df = 2hcut×120o = 2hcut×2p/3. Construct densities by dividing by the area in h-f space. PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

9 ISAJET 7.32 (without MPI) “Transverse” Density
ISAJET uses a naïve leading-log parton shower-model which does not agree with the data! ISAJET “Hard” Component February 25, 2000 Beam-Beam Remnants Plot shows average “transverse” charge particle density (|h|<1, pT>0.5 GeV) versus PT(charged jet#1) compared to the QCD hard scattering predictions of ISAJET 7.32 (default parameters with PT(hard)>3 GeV/c) . The predictions of ISAJET are divided into two categories: charged particles that arise from the break-up of the beam and target (beam-beam remnants); and charged particles that arise from the outgoing jet plus initial and final-state radiation (hard scattering component). PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

10 HERWIG 6.4 (without MPI) “Transverse” Density
HERWIG uses a modified leading-log parton shower-model which does agrees better with the data! HERWIG Beam-Beam Remnants “Hard” Component Plot shows average “transverse” charge particle density (|h|<1, pT>0.5 GeV) versus PT(charged jet#1) compared to the QCD hard scattering predictions of HERWIG 5.9 (default parameters with PT(hard)>3 GeV/c without MPI). The predictions of HERWIG are divided into two categories: charged particles that arise from the break-up of the beam and target (beam-beam remnants); and charged particles that arise from the outgoing jet plus initial and final-state radiation (hard scattering component). PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

11 Tuning PYTHIA 6.2: Multiple Parton Interaction Parameters
Default Description PARP(83) 0.5 Double-Gaussian: Fraction of total hadronic matter within PARP(84) PARP(84) 0.2 Double-Gaussian: Fraction of the overall hadron radius containing the fraction PARP(83) of the total hadronic matter. PARP(85) 0.33 Probability that the MPI produces two gluons with color connections to the “nearest neighbors. PARP(86) 0.66 Probability that the MPI produces two gluons either as described by PARP(85) or as a closed gluon loop. The remaining fraction consists of quark-antiquark pairs. PARP(89) 1 TeV Determines the reference energy E0. PARP(82) 1.9 GeV/c The cut-off PT0 that regulates the 2-to-2 scattering divergence 1/PT4→1/(PT2+PT02)2 PARP(90) 0.16 Determines the energy dependence of the cut-off PT0 as follows PT0(Ecm) = PT0(Ecm/E0)e with e = PARP(90) PARP(67) 1.0 A scale factor that determines the maximum parton virtuality for space-like showers. The larger the value of PARP(67) the more initial-state radiation. Hard Core Determines the energy dependence of the MPI! Determine by comparing with 630 GeV data! Affects the amount of initial-state radiation! Take E0 = 1.8 TeV Reference point at 1.8 TeV PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

12 PYTHIA default parameters
PYTHIA Defaults MPI constant probability scattering PYTHIA default parameters Parameter 6.115 6.125 6.158 6.206 MSTP(81) 1 MSTP(82) PARP(81) 1.4 1.9 PARP(82) 1.55 2.1 PARP(89) 1,000 PARP(90) 0.16 PARP(67) 4.0 1.0 Plot shows the “Transverse” charged particle density versus PT(chgjet#1) compared to the QCD hard scattering predictions of PYTHIA (PT(hard) > 0) using the default parameters for multiple parton interactions and CTEQ3L, CTEQ4L, and CTEQ5L. Default parameters give very poor description of the “underlying event”! Note Change PARP(67) = 4.0 (< 6.138) PARP(67) = 1.0 (> 6.138) PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

13 Run 1 PYTHIA Tune A PYTHIA 6.206 CTEQ5L
CDF Default Feburary 25, 2000! PYTHIA CTEQ5L Parameter Tune B Tune A MSTP(81) 1 MSTP(82) 4 PARP(82) 1.9 GeV 2.0 GeV PARP(83) 0.5 PARP(84) 0.4 PARP(85) 1.0 0.9 PARP(86) 0.95 PARP(89) 1.8 TeV PARP(90) 0.25 PARP(67) 4.0 Run 1 Analysis Plot shows the “transverse” charged particle density versus PT(chgjet#1) compared to the QCD hard scattering predictions of two tuned versions of PYTHIA (CTEQ5L, Set B (PARP(67)=1) and Set A (PARP(67)=4)). Old PYTHIA default (more initial-state radiation) Old PYTHIA default (more initial-state radiation) New PYTHIA default (less initial-state radiation) New PYTHIA default (less initial-state radiation) PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

14 “Transverse” Charged Densities Energy Dependence
Increasing e produces less energy dependence for the UE resulting in less UE activity at the LHC! Lowering PT0 at 630 GeV (i.e. increasing e) increases UE activity resulting in less energy dependence. Shows the “transverse” charged PTsum density (|h|<1, PT>0.4 GeV) versus PT(charged jet#1) at 630 GeV predicted by HERWIG 6.4 (PT(hard) > 3 GeV/c, CTEQ5L) and a tuned version of PYTHIA (PT(hard) > 0, CTEQ5L, Set A, e = 0, e = 0.16 (default) and e = 0.25 (preferred)). Also shown are the PTsum densities (0.16 GeV/c and 0.54 GeV/c) determined from the Tano, Kovacs, Huston, and Bhatti “transverse” cone analysis at 630 GeV. Rick Field Fermilab MC Workshop October 4, 2002! Reference point E0 = 1.8 TeV PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

15 Tune A energy dependence!
PYTHIA 6.2 Tunes All use LO as with L = 192 MeV! Parameter Tune AW Tune DW Tune D6 PDF CTEQ5L CTEQ6L MSTP(81) 1 MSTP(82) 4 PARP(82) 2.0 GeV 1.9 GeV 1.8 GeV PARP(83) 0.5 PARP(84) 0.4 PARP(85) 0.9 1.0 PARP(86) 0.95 PARP(89) 1.8 TeV PARP(90) 0.25 PARP(62) 1.25 PARP(64) 0.2 PARP(67) 4.0 2.5 MSTP(91) PARP(91) 2.1 PARP(93) 15.0 UE Parameters Uses CTEQ6L Tune A energy dependence! ISR Parameter Intrinsic KT PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

16 ATLAS energy dependence!
PYTHIA 6.2 Tunes All use LO as with L = 192 MeV! Parameter Tune DWT Tune D6T ATLAS PDF CTEQ5L CTEQ6L MSTP(81) 1 MSTP(82) 4 PARP(82) GeV GeV 1.8 GeV PARP(83) 0.5 PARP(84) 0.4 PARP(85) 1.0 0.33 PARP(86) 0.66 PARP(89) 1.96 TeV 1.0 TeV PARP(90) 0.16 PARP(62) 1.25 PARP(64) 0.2 PARP(67) 2.5 MSTP(91) PARP(91) 2.1 PARP(93) 15.0 5.0 UE Parameters Tune B Tune AW Tune BW Tune A ATLAS energy dependence! ISR Parameter Tune DW Tune D6 Tune D Tune D6T Intrinsic KT PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

17 “Transverse” Charged Density
Shows the charged particle density in the “transverse” region for charged particles (pT > 0.5 GeV/c, |h| < 1) at 7 TeV as defined by PTmax, PT(chgjet#1), and PT(muon-pair) from PYTHIA Tune DW at the particle level (i.e. generator level). Charged particle jets are constructed using the Anti-KT algorithm with d = 0.5. PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

18 Min-Bias “Associated” Charged Particle Density
LHC14 LHC10 LHC7 Tevatron 900 GeV RHIC 0.2 TeV → 1.96 TeV (UE increase ~2.7 times) 1.96 TeV → 14 TeV (UE increase ~1.9 times) RHIC Tevatron LHC Shows the “associated” charged particle density in the “transverse” region as a function of PTmax for charged particles (pT > 0.5 GeV/c, |h| < 1, not including PTmax) for “min-bias” events at 0.2 TeV, 0.9 TeV, 1.96 TeV, 7 TeV, 10 TeV, 14 TeV predicted by PYTHIA Tune DW at the particle level (i.e. generator level). Linear scale! PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

19 Min-Bias “Associated” Charged Particle Density
LHC14 LHC10 LHC7 Tevatron 900 GeV RHIC 7 TeV → 14 TeV (UE increase ~20%) LHC7 LHC14 Linear on a log plot! Shows the “associated” charged particle density in the “transverse” region as a function of PTmax for charged particles (pT > 0.5 GeV/c, |h| < 1, not including PTmax) for “min-bias” events at 0.2 TeV, 0.9 TeV, 1.96 TeV, 7 TeV, 10 TeV, 14 TeV predicted by PYTHIA Tune DW at the particle level (i.e. generator level). Log scale! PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

20 Rick Field – Florida/CDF/CMS
Conclusions November 2009 We are making good progress in understanding and modeling the “underlying event”. RHIC data at 200 GeV are very important! The new Pythia pT ordered tunes (py64 S320 and py64 P329) are very similar to Tune A, Tune AW, and Tune DW. At present the new tunes do not fit the data better than Tune AW and Tune DW. However, the new tune are theoretically preferred! It is clear now that the default value PARP(90) = 0.16 is not correct and the value should be closer to the Tune A value of 0.25. The new and old PYTHIA tunes are beginning to converge and I believe we are finally in a position to make some legitimate predictions at the LHC! All tunes with the default value PARP(90) = 0.16 are wrong and are overestimating the activity of min-bias and the underlying event at the LHC! This includes all my “T” tunes and the (old) ATLAS tunes! Need to measure “Min-Bias” and the “underlying event” at the LHC as soon as possible to see if there is new QCD physics to be learned! PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

21 “Transverse” Charged Particle Density
Leading Charged Particle Jet, chgjet#1. Prediction! Leading Charged Particle, PTmax. Fake data (from MC) at 900 GeV on the “transverse” charged particle density, dN/dhdf, as defined by the leading charged particle (PTmax) and the leading charged particle jet (chgjet#1) for charged particles with pT > 0.5 GeV/c and |h| < 2. The fake data (from PYTHIA Tune DW) are generated at the particle level (i.e. generator level) assuming 0.5 M min-bias events at 900 GeV (361,595 events in the plot). Rick Field Workshop CERN, November 6, 2009 PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

22 “Transverse” Charge Density
Rick Field Workshop CERN, November 6, 2009 factor of 2! Prediction! 900 GeV → 7 TeV (UE increase ~ factor of 2) LHC 900 GeV LHC 7 TeV ~0.4 → ~0.8 Shows the charged particle density in the “transverse” region for charged particles (pT > 0.5 GeV/c, |h| < 2) at 900 GeV and 7 TeV as defined by PTmax from PYTHIA Tune DW and at the particle level (i.e. generator level). PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

23 “Transverse” Charged Particle Density
Monte-Carlo! Real Data! Fake data (from MC) at 900 GeV on the “transverse” charged particle density, dN/dhdf, as defined by the leading charged particle (PTmax) and the leading charged particle jet (chgjet#1) for charged particles with pT > 0.5 GeV/c and |h| < 2. The fake data (from PYTHIA Tune DW) are generated at the particle level (i.e. generator level) assuming 0.5 M min-bias events at 900 GeV (361,595 events in the plot). CMS preliminary data at 900 GeV on the “transverse” charged particle density, dN/dhdf, as defined by the leading charged particle (PTmax) and the leading charged particle jet (chgjet#1) for charged particles with pT > 0.5 GeV/c and |h| < 2. The data are uncorrected and compared with PYTHIA Tune DW after detector simulation (216,215 events in the plot). PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

24 “Transverse” Charged PTsum Density
Monte-Carlo! Real Data! Fake data (from MC) at 900 GeV on the “transverse” charged PTsum density, dPT/dhdf, as defined by the leading charged particle (PTmax) and the leading charged particle jet (chgjet#1) for charged particles with pT > 0.5 GeV/c and |h| < 2. The fake data (from PYTHIA Tune DW) are generated at the particle level (i.e. generator level) assuming 0.5 M min-bias events at 900 GeV (361,595 events in the plot). CMS preliminary data at 900 GeV on the “transverse” charged PTsum density, dPT/dhdf, as defined by the leading charged particle (PTmax) and the leading charged particle jet (chgjet#1) for charged particles with pT > 0.5 GeV/c and |h| < 2. The data are uncorrected and compared with PYTHIA Tune DW after detector simulation (216,215 events in the plot). PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

25 Rick Field – Florida/CDF/CMS
PYTHIA Tune DW CMS ATLAS CMS preliminary data at 900 GeV and 7 TeV on the “transverse” charged particle density, dN/dhdf, as defined by the leading charged particle jet (chgjet#1) for charged particles with pT > 0.5 GeV/c and |h| < 2. The data are uncorrected and compared with PYTHIA Tune DW after detector simulation. ATLAS preliminary data at 900 GeV and 7 TeV on the “transverse” charged particle density, dN/dhdf, as defined by the leading charged particle (PTmax) for charged particles with pT > 0.5 GeV/c and |h| < The data are corrected and compared with PYTHIA Tune DW at the generator level. PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

26 Rick Field – Florida/CDF/CMS
PYTHIA Tune DW Ratio CMS CMS CMS preliminary data at 900 GeV and 7 TeV on the “transverse” charged particle density, dN/dhdf, as defined by the leading charged particle jet (chgjet#1) for charged particles with pT > 0.5 GeV/c and |h| < 2. The data are uncorrected and compared with PYTHIA Tune DW after detector simulation. Ratio of CMS preliminary data at 900 GeV and 7 TeV on the “transverse” charged particle density, dN/dhdf, as defined by the leading charged particle jet (chgjet#1) for charged particles with pT > 0.5 GeV/c and |h| < 2. The data are uncorrected and compared with PYTHIA Tune DW after detector simulation. PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

27 Rick Field – Florida/CDF/CMS
PYTHIA Tune DW How well did we do at predicting the “underlying event” at 900 GeV and 7 TeV? Tune DW Tune DW I am surprised that the Tunes did not do a better job of predicting the behavior of the “underlying event” at 900 GeV and 7 TeV! Tune DW PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

28 Rick Field – Florida/CDF/CMS
PYTHIA Tune DW How well did we do at predicting the “underlying event” at 900 GeV and 7 TeV? Tune DW Tune DW I am surprised that the Tunes did as well as they did at predicting the behavior of the “underlying event” at 900 GeV and 7 TeV! Tune DW PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

29 How Universal are the Tunes?
Do we need a separate tune for each center-of-mass energy? 900 GeV, 1.96 TeV, 7 TeV, etc. PYTHIA Tune DW did a nice (although not perfect) job predicting the LHC Jet Production and Drell-Yan UE data. I am still hoping for a single tune that will describe all energies! Do we need a separate tune for each hard QCD subprocess? Jet Production, Drell-Yan Production, etc. Color Connections The same tune can describe both Jet Production and Drell-Yan! PARP(90) Do we need separate tunes for “Min-Bias” (MB) and the “underlying event” (UE) in a hard scattering process? Diffraction PHTHIA Tune Z1 does fairly well at both the UE and MB, but you cannot expect such a naïve approach to be perfect! PARP(82) PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

30 QCD Monte-Carlo Models: Lepton-Pair Production
“Hard Scattering” Component “Underlying Event” Start with the perturbative Drell-Yan muon pair production and add initial-state gluon radiation (in the leading log approximation or modified leading log approximation). The “underlying event” consists of the “beam-beam remnants” and from particles arising from soft or semi-soft multiple parton interactions (MPI). Of course the outgoing colored partons fragment into hadron “jet” and inevitably “underlying event” observables receive contributions from initial-state radiation. PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

31 Charged Particle Density
New Large increase in the UE in going from 1.96 TeV to 7 TeV as predicted by PYTHIA Tune DW! CMS CDF: Proton-Antiproton Collisions at 1.96 GeV Lepton Cuts: pT > 20 GeV |h| < 1.0 Mass Cut: 70 < M(lepton-pair) < 110 GeV Charged Particles: pT > 0.5 GeV/c |h| < 1.0 CMS: Proton-Proton Collisions at 7 GeV Lepton Cuts: pT > 20 GeV |h| < 2.4 Mass Cut: 60 < M(lepton-pair) < 120 GeV Charged Particles: pT > 0.5 GeV/c |h| < 2.0 CDF data at 1.96 TeV on the density of charged particles, dN/dhdf, with pT > 0.5 GeV/c and |h| < 1 for Drell-Yan production as a function of PT(Z) for the “toward”, “away”, and “transverse” regions compared with PYTHIA Tune DW. CMS data at 7 TeV on the density of charged particles, dN/dhdf, with pT > 0.5 GeV/c and |h| < 2 for Drell-Yan production as a function of PT(Z) for the “toward”, “away”, and “transverse” regions compared with PYTHIA Tune DW. PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

32 PYTHIA Tune DW CMS Overall PYTHIA Tune DW
is in amazingly good agreement with the Tevatron Jet production and Drell-Yan data and did a very good job in predicting the LHC Jet production and Drell-Yan data! (although not perfect) CMS PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

33 Rick Field – Florida/CDF/CMS
Optional Homework Run PYTHIA Z-Boson Production at 7 TeV: MSEL=11, CKIN(1)=70.0, CKIN(2)=110.0 Run with two values of the MPI cut-off pT0 = PARP(82): 1.5 GeV/c and 3.0 GeV/c. Look at the overall number of outgoing stable particles and study how this depends on the MPI cut-off pT0. PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS


Download ppt "PHZ 6358 Fall 2011 The Modeling of the Underlying Event Rick Field"

Similar presentations


Ads by Google