Presentation is loading. Please wait.

Presentation is loading. Please wait.

The LHC Physics Environment

Similar presentations


Presentation on theme: "The LHC Physics Environment"— Presentation transcript:

1 The LHC Physics Environment
Talk 1: What We Have Learned at the Tevatron University of Wisconsin, Madison June 24th – July 2nd, 2009 Rick Field University of Florida Outline of Talk The old days of “Feynman-Field Phenomenology”. Review what we learned about “min-bias”, the “underlying event”, and “event topologies” in Run 1 at CDF. Review the CDF Run 2 “underlying event” studies in high transverse momentum jet production and in “Drell-Yan” production. CDF Run 2 Describe the QCD Monte-Carlo models that are used to simulate hadron-hadron collisions. Examine some extrapolations from the Tevatron to the LHC. CMS at the LHC 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

2 Toward and Understanding of Hadron-Hadron Collisions
Feynman-Field Phenomenology 1st hat! Feynman and Field From 7 GeV/c p0’s to 600 GeV/c Jets. The early days of trying to understand and simulate hadron-hadron collisions. Caltech 1973 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

3 Hadron-Hadron Collisions
FF1 1977 What happens when two hadrons collide at high energy? Feynman quote from FF1 “The model we shall choose is not a popular one, so that we will not duplicate too much of the work of others who are similarly analyzing various models (e.g. constituent interchange model, multiperipheral models, etc.). We shall assume that the high PT particles arise from direct hard collisions between constituent quarks in the incoming particles, which fragment or cascade down into several hadrons.” Most of the time the hadrons ooze through each other and fall apart (i.e. no hard scattering). The outgoing particles continue in roughly the same direction as initial proton and antiproton. Occasionally there will be a large transverse momentum meson. Question: Where did it come from? We assumed it came from quark-quark elastic scattering, but we did not know how to calculate it! “Black-Box Model” 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

4 Quark-Quark Black-Box Model
No gluons! FF1 1977 Quark Distribution Functions determined from deep-inelastic lepton-hadron collisions Feynman quote from FF1 “Because of the incomplete knowledge of our functions some things can be predicted with more certainty than others. Those experimental results that are not well predicted can be “used up” to determine these functions in greater detail to permit better predictions of further experiments. Our papers will be a bit long because we wish to discuss this interplay in detail.” Quark Fragmentation Functions determined from e+e- annihilations Quark-Quark Cross-Section Unknown! Deteremined from hadron-hadron collisions. 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

5 Quark-Quark Black-Box Model
FF1 1977 Predict particle ratios Predict increase with increasing CM energy W When Jim Cronin’s group at the University of Chicago measured these rations and we knew we were on the right track! The “underlying event” (Beam-Beam Remnants)! Predict overall event topology (FFF1 paper 1977) 7 GeV/c p0’s! 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

6 QCD Approach: Quarks & Gluons
FFF2 1978 Quark & Gluon Fragmentation Functions Q2 dependence predicted from QCD Feynman quote from FFF2 “We investigate whether the present experimental behavior of mesons with large transverse momentum in hadron-hadron collisions is consistent with the theory of quantum-chromodynamics (QCD) with asymptotic freedom, at least as the theory is now partially understood.” Parton Distribution Functions Q2 dependence predicted from QCD Quark & Gluon Cross-Sections Calculated from QCD 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

7 High PT Jets CDF (2006) Feynman, Field, & Fox (1978) 30 GeV/c! Predict
large “jet” cross-section 30 GeV/c! Feynman quote from FFF “At the time of this writing, there is still no sharp quantitative test of QCD. An important test will come in connection with the phenomena of high PT discussed here.” 600 GeV/c Jets! 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

8 QCD Monte-Carlo Models: High Transverse Momentum Jets
“Hard Scattering” Component “Underlying Event” Start with the perturbative 2-to-2 (or sometimes 2-to-3) parton-parton scattering and add initial and final-state gluon radiation (in the leading log approximation or modified leading log approximation). The “underlying event” consists of the “beam-beam remnants” and from particles arising from soft or semi-soft multiple parton interactions (MPI). Of course the outgoing colored partons fragment into hadron “jet” and inevitably “underlying event” observables receive contributions from initial and final-state radiation. The “underlying event” is an unavoidable background to most collider observables and having good understand of it leads to more precise collider measurements! 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

9 QCD Monte-Carlo Models: Lepton-Pair Production
“Hard Scattering” Component “Underlying Event” Start with the perturbative Drell-Yan muon pair production and add initial-state gluon radiation (in the leading log approximation or modified leading log approximation). The “underlying event” consists of the “beam-beam remnants” and from particles arising from soft or semi-soft multiple parton interactions (MPI). Of course the outgoing colored partons fragment into hadron “jet” and inevitably “underlying event” observables receive contributions from initial-state radiation. 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

10 Proton-AntiProton Collisions at the Tevatron
The CDF “Min-Bias” trigger picks up most of the “hard core” cross-section plus a small amount of single & double diffraction. stot = sEL + sIN stot = sEL + sSD + sDD + sHC 1.8 TeV: 78mb = 18mb mb (4-7)mb + (47-44)mb The “hard core” component contains both “hard” and “soft” collisions. CDF “Min-Bias” trigger 1 charged particle in forward BBC AND 1 charged particle in backward BBC “Inelastic Non-Diffractive Component” Beam-Beam Counters 3.2 < |h| < 5.9 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

11 Particle Densities Charged Particles pT > 0.5 GeV/c |h| < 1
DhDf = 4p = 12.6 CDF Run 2 “Min-Bias” CDF Run 2 “Min-Bias” Observable Average Average Density per unit h-f Nchg Number of Charged Particles (pT > 0.5 GeV/c, |h| < 1) 3.17 +/- 0.31 / PTsum (GeV/c) Scalar pT sum of Charged Particles 2.97 +/- 0.23 / 1 charged particle dNchg/dhdf = 1/4p = 0.08 dNchg/dhdf = 3/4p = 0.24 3 charged particles 1 GeV/c PTsum dPTsum/dhdf = 1/4p GeV/c = 0.08 GeV/c dPTsum/dhdf = 3/4p GeV/c = 0.24 GeV/c 3 GeV/c PTsum Divide by 4p Study the charged particles (pT > 0.5 GeV/c, |h| < 1) and form the charged particle density, dNchg/dhdf, and the charged scalar pT sum density, dPTsum/dhdf. 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

12 CDF Run 1 “Min-Bias” Data Charged Particle Density
<dNchg/dh> = 4.2 <dNchg/dhdf> = 0.67 Shows CDF “Min-Bias” data on the number of charged particles per unit pseudo-rapidity at 630 and 1,800 GeV. There are about 4.2 charged particles per unit h in “Min-Bias” collisions at 1.8 TeV (|h| < 1, all pT). Convert to charged particle density, dNchg/dhdf, by dividing by 2p. There are about 0.67 charged particles per unit h-f in “Min-Bias” collisions at 1.8 TeV (|h| < 1, all pT). 0.25 0.67 There are about 0.25 charged particles per unit h-f in “Min-Bias” collisions at 1.96 TeV (|h| < 1, pT > 0.5 GeV/c). 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

13 CDF Run 1 Min-Bias “Associated” Charged Particle Density
Highest pT charged particle! “Associated” densities do not include PTmax! Use the maximum pT charged particle in the event, PTmax, to define a direction and look at the the “associated” density, dNchg/dhdf, in “min-bias” collisions (pT > 0.5 GeV/c, |h| < 1). It is more probable to find a particle accompanying PTmax than it is to find a particle in the central region! Shows the data on the Df dependence of the “associated” charged particle density, dNchg/dhdf, for charged particles (pT > 0.5 GeV/c, |h| < 1, not including PTmax) relative to PTmax (rotated to 180o) for “min-bias” events. Also shown is the average charged particle density, dNchg/dhdf, for “min-bias” events. 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

14 CDF Run 1 Min-Bias “Associated” Charged Particle Density
Rapid rise in the particle density in the “transverse” region as PTmax increases! PTmax > 2.0 GeV/c Transverse Region Transverse Region Ave Min-Bias 0.25 per unit h-f PTmax > 0.5 GeV/c Shows the data on the Df dependence of the “associated” charged particle density, dNchg/dhdf, for charged particles (pT > 0.5 GeV/c, |h| < 1, not including PTmax) relative to PTmax (rotated to 180o) for “min-bias” events with PTmax > 0.5, 1.0, and 2.0 GeV/c. Shows “jet structure” in “min-bias” collisions (i.e. the “birth” of the leading two jets!). 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

15 Min-Bias “Associated” Charged Particle Density
“Toward” Region “Transverse” “Transverse” ~ factor of 2! Shows the Df dependence of the “associated” charged particle density, dNchg/dhdf, for charged particles (pT > 0.5 GeV/c, |h| < 1, not including PTmax) relative to PTmax (rotated to 180o) for “min-bias” events at 1.96 TeV with PTmax > 0.5, 1.0, 2.0, 5.0, and 10.0 GeV/c from PYTHIA Tune A (generator level). Shows the “associated” charged particle density in the “toward”, “away” and “transverse” regions as a function of PTmax for charged particles (pT > 0.5 GeV/c, |h| < 1, not including PTmax) for “min-bias” events at 1.96 TeV from PYTHIA Tune A (generator level). 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

16 “Transverse” Charged Density
0.6 Shows the charged particle density in the “transverse” region for charged particles (pT > 0.5 GeV/c, |h| < 1) at 1.96 TeV as defined by PTmax, PT(chgjet#1), and PT(jet#1) from PYTHIA Tune A at the particle level (i.e. generator level). 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

17 CDF Run 1: Evolution of Charged Jets “Underlying Event”
Charged Particle Df Correlations PT > 0.5 GeV/c |h| < 1 Look at the charged particle density in the “transverse” region! “Transverse” region very sensitive to the “underlying event”! CDF Run 1 Analysis Look at charged particle correlations in the azimuthal angle Df relative to the leading charged particle jet. Define |Df| < 60o as “Toward”, 60o < |Df| < 120o as “Transverse”, and |Df| > 120o as “Away”. All three regions have the same size in h-f space, DhxDf = 2x120o = 4p/3. 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

18 Run 1 Charged Particle Density “Transverse” pT Distribution
Factor of 2! PT(charged jet#1) > 30 GeV/c “Transverse” <dNchg/dhdf> = 0.56 “Min-Bias” CDF Run 1 Min-Bias data <dNchg/dhdf> = 0.25 Compares the average “transverse” charge particle density with the average “Min-Bias” charge particle density (|h|<1, pT>0.5 GeV). Shows how the “transverse” charge particle density and the Min-Bias charge particle density is distributed in pT. 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

19 ISAJET 7.32 “Transverse” Density
ISAJET uses a naïve leading-log parton shower-model which does not agree with the data! ISAJET “Hard” Component Beam-Beam Remnants Plot shows average “transverse” charge particle density (|h|<1, pT>0.5 GeV) versus PT(charged jet#1) compared to the QCD hard scattering predictions of ISAJET 7.32 (default parameters with PT(hard)>3 GeV/c) . The predictions of ISAJET are divided into two categories: charged particles that arise from the break-up of the beam and target (beam-beam remnants); and charged particles that arise from the outgoing jet plus initial and final-state radiation (hard scattering component). 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

20 HERWIG 6.4 “Transverse” Density
HERWIG uses a modified leading-log parton shower-model which does agrees better with the data! HERWIG Beam-Beam Remnants “Hard” Component Plot shows average “transverse” charge particle density (|h|<1, pT>0.5 GeV) versus PT(charged jet#1) compared to the QCD hard scattering predictions of HERWIG 5.9 (default parameters with PT(hard)>3 GeV/c). The predictions of HERWIG are divided into two categories: charged particles that arise from the break-up of the beam and target (beam-beam remnants); and charged particles that arise from the outgoing jet plus initial and final-state radiation (hard scattering component). 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

21 HERWIG 6.4 “Transverse” PT Distribution
HERWIG has the too steep of a pT dependence of the “beam-beam remnant” component of the “underlying event”! Herwig PT(chgjet#1) > 30 GeV/c “Transverse” <dNchg/dhdf> = 0.51 Herwig PT(chgjet#1) > 5 GeV/c <dNchg/dhdf> = 0.40 Compares the average “transverse” charge particle density (|h|<1, pT>0.5 GeV) versus PT(charged jet#1) and the pT distribution of the “transverse” density, dNchg/dhdfdPT with the QCD hard scattering predictions of HERWIG 6.4 (default parameters with PT(hard)>3 GeV/c. Shows how the “transverse” charge particle density is distributed in pT. 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

22 MPI: Multiple Parton Interactions
PYTHIA models the “soft” component of the underlying event with color string fragmentation, but in addition includes a contribution arising from multiple parton interactions (MPI) in which one interaction is hard and the other is “semi-hard”. The probability that a hard scattering events also contains a semi-hard multiple parton interaction can be varied but adjusting the cut-off for the MPI. One can also adjust whether the probability of a MPI depends on the PT of the hard scattering, PT(hard) (constant cross section or varying with impact parameter). One can adjust the color connections and flavor of the MPI (singlet or nearest neighbor, q-qbar or glue-glue). Also, one can adjust how the probability of a MPI depends on PT(hard) (single or double Gaussian matter distribution). 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

23 MPI, Pile-Up, and Overlap
MPI: Multiple Parton Interactions MPI: Additional 2-to-2 parton-parton scatterings within a single proton-antiproton collision. Pile-Up Proton AntiProton Proton AntiProton Interaction Region Dz Pile-Up: More than one proton-antiproton collision in the beam crossing. Overlap Overlap: An experimental timing issue where a proton-antiproton collision from the next beam crossing gets included in the proton-antiproton collision from the current beam crossing because the next crossing happened before the event could be read out. 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

24 Tuning PYTHIA: Multiple Parton Interaction Parameters
I will talk more about the energy dependence of MPI tomorrow morning! Parameter Default Description PARP(83) 0.5 Double-Gaussian: Fraction of total hadronic matter within PARP(84) PARP(84) 0.2 Double-Gaussian: Fraction of the overall hadron radius containing the fraction PARP(83) of the total hadronic matter. PARP(85) 0.33 Probability that the MPI produces two gluons with color connections to the “nearest neighbors. PARP(86) 0.66 Probability that the MPI produces two gluons either as described by PARP(85) or as a closed gluon loop. The remaining fraction consists of quark-antiquark pairs. PARP(89) 1 TeV Determines the reference energy E0. PARP(82) 1.9 GeV/c The cut-off PT0 that regulates the 2-to-2 scattering divergence 1/PT4→1/(PT2+PT02)2 PARP(90) 0.16 Determines the energy dependence of the cut-off PT0 as follows PT0(Ecm) = PT0(Ecm/E0)e with e = PARP(90) PARP(67) 1.0 A scale factor that determines the maximum parton virtuality for space-like showers. The larger the value of PARP(67) the more initial-state radiation. Hard Core Determines the energy dependence of the MPI! Determine by comparing with 630 GeV data! Affects the amount of initial-state radiation! Take E0 = 1.8 TeV Reference point at 1.8 TeV 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

25 PYTHIA default parameters
PYTHIA Defaults MPI constant probability scattering PYTHIA default parameters Parameter 6.115 6.125 6.158 6.206 MSTP(81) 1 MSTP(82) PARP(81) 1.4 1.9 PARP(82) 1.55 2.1 PARP(89) 1,000 PARP(90) 0.16 PARP(67) 4.0 1.0 Plot shows the “Transverse” charged particle density versus PT(chgjet#1) compared to the QCD hard scattering predictions of PYTHIA (PT(hard) > 0) using the default parameters for multiple parton interactions and CTEQ3L, CTEQ4L, and CTEQ5L. Default parameters give very poor description of the “underlying event”! Note Change PARP(67) = 4.0 (< 6.138) PARP(67) = 1.0 (> 6.138) 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

26 Run 1 PYTHIA Tune A PYTHIA 6.206 CTEQ5L
CDF Default! PYTHIA CTEQ5L Parameter Tune B Tune A MSTP(81) 1 MSTP(82) 4 PARP(82) 1.9 GeV 2.0 GeV PARP(83) 0.5 PARP(84) 0.4 PARP(85) 1.0 0.9 PARP(86) 0.95 PARP(89) 1.8 TeV PARP(90) 0.25 PARP(67) 4.0 Run 1 Analysis Plot shows the “transverse” charged particle density versus PT(chgjet#1) compared to the QCD hard scattering predictions of two tuned versions of PYTHIA (CTEQ5L, Set B (PARP(67)=1) and Set A (PARP(67)=4)). Not the default! Old PYTHIA default (more initial-state radiation) Old PYTHIA default (more initial-state radiation) New PYTHIA default (less initial-state radiation) New PYTHIA default (less initial-state radiation) 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

27 PYTHIA Tune A Min-Bias “Soft” + ”Hard”
Tuned to fit the CDF Run 1 “underlying event”! PYTHIA Tune A CDF Run 2 Default 12% of “Min-Bias” events have PT(hard) > 5 GeV/c! 1% of “Min-Bias” events have PT(hard) > 10 GeV/c! PYTHIA regulates the perturbative 2-to-2 parton-parton cross sections with cut-off parameters which allows one to run with PT(hard) > 0. One can simulate both “hard” and “soft” collisions in one program. Lots of “hard” scattering in “Min-Bias” at the Tevatron! The relative amount of “hard” versus “soft” depends on the cut-off and can be tuned. This PYTHIA fit predicts that 12% of all “Min-Bias” events are a result of a hard 2-to-2 parton-parton scattering with PT(hard) > 5 GeV/c (1% with PT(hard) > 10 GeV/c)! 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

28 PYTHIA Tune A LHC Min-Bias Predictions
12% of “Min-Bias” events have PT(hard) > 10 GeV/c! LHC? Shows the center-of-mass energy dependence of the charged particle density, dNchg/dhdfdPT, for “Min-Bias” collisions compared with PYTHIA Tune A with PT(hard) > 0. 1% of “Min-Bias” events have PT(hard) > 10 GeV/c! PYTHIA Tune A predicts that 1% of all “Min-Bias” events at 1.8 TeV are a result of a hard 2-to-2 parton-parton scattering with PT(hard) > 10 GeV/c which increases to 12% at 14 TeV! 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

29 “Towards”, “Away”, “Transverse”
Look at the charged particle density, the charged PTsum density and the ETsum density in all 3 regions! Df Correlations relative to the leading jet Charged particles pT > 0.5 GeV/c |h| < 1 Calorimeter towers ET > 0.1 GeV |h| < 1 “Transverse” region is very sensitive to the “underlying event”! Z-Boson Direction Look at correlations in the azimuthal angle Df relative to the leading charged particle jet (|h| < 1) or the leading calorimeter jet (|h| < 2). Define |Df| < 60o as “Toward”, 60o < |Df| < 120o as “Transverse ”, and |Df| > 120o as “Away”. Each of the three regions have area DhDf = 2×120o = 4p/3. 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

30 Rick Field – Florida/CDF/CMS
Event Topologies “Leading Jet” events correspond to the leading calorimeter jet (MidPoint R = 0.7) in the region |h| < 2 with no other conditions. “Leading Jet” subset “Inclusive 2-Jet Back-to-Back” events are selected to have at least two jets with Jet#1 and Jet#2 nearly “back-to-back” (Df12 > 150o) with almost equal transverse energies (PT(jet#2)/PT(jet#1) > 0.8) with no other conditions . “Inc2J Back-to-Back” subset “Exclusive 2-Jet Back-to-Back” events are selected to have at least two jets with Jet#1 and Jet#2 nearly “back-to-back” (Df12 > 150o) with almost equal transverse energies (PT(jet#2)/PT(jet#1) > 0.8) and PT(jet#3) < 15 GeV/c. “Exc2J Back-to-Back” “Charged Jet” “Leading ChgJet” events correspond to the leading charged particle jet (R = 0.7) in the region |h| < 1 with no other conditions. “Z-Boson” events are Drell-Yan events with 70 < M(lepton-pair) < 110 GeV with no other conditions. Z-Boson 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

31 “transMAX” & “transMIN”
“transMIN” very sensitive to the “beam-beam remnants”! Z-Boson Direction Area = 4p/6 Define the MAX and MIN “transverse” regions (“transMAX” and “transMIN”) on an event-by-event basis with MAX (MIN) having the largest (smallest) density. Each of the two “transverse” regions have an area in h-f space of 4p/6. The “transMIN” region is very sensitive to the “beam-beam remnant” and the soft multiple parton interaction components of the “underlying event”. The difference, “transDIF” (“transMAX” minus “transMIN”), is very sensitive to the “hard scattering” component of the “underlying event” (i.e. hard initial and final-state radiation). The overall “transverse” density is the average of the “transMAX” and “transMIN” densities. 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

32 Observables at the Particle and Detector Level
“Leading Jet” Observable Particle Level Detector Level dNchg/dhdf Number of charged particles per unit h-f (pT > 0.5 GeV/c, |h| < 1) Number of “good” charged tracks dPTsum/dhdf Scalar pT sum of charged particles per unit h-f Scalar pT sum of “good” charged tracks per unit h-f <pT> Average pT of charged particles Average pT of “good” charged tracks PTmax Maximum pT charged particle Require Nchg ≥ 1 Maximum pT “good” charged tracks dETsum/dhdf Scalar ET sum of all particles (all pT, |h| < 1) Scalar ET sum of all calorimeter towers (ET > 0.1 GeV, |h| < 1) PTsum/ETsum Scalar pT sum of charged particles divided by the scalar ET sum of all particles (all pT, |h| < 1) Scalar pT sum of “good” charged tracks calorimeter towers (ET > 0.1 GeV, |h| < 1) “Back-to-Back” 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

33 CDF Run 1 PT(Z) PYTHIA 6.2 CTEQ5L
Tune used by the CDF-EWK group! PYTHIA 6.2 CTEQ5L Parameter Tune A Tune AW MSTP(81) 1 MSTP(82) 4 PARP(82) 2.0 GeV PARP(83) 0.5 PARP(84) 0.4 PARP(85) 0.9 PARP(86) 0.95 PARP(89) 1.8 TeV PARP(90) 0.25 PARP(62) 1.0 1.25 PARP(64) 0.2 PARP(67) 4.0 MSTP(91) PARP(91) 2.1 PARP(93) 5.0 15.0 UE Parameters ISR Parameters Shows the Run 1 Z-boson pT distribution (<pT(Z)> ≈ 11.5 GeV/c) compared with PYTHIA Tune A (<pT(Z)> = 9.7 GeV/c), and PYTHIA Tune AW (<pT(Z)> = 11.7 GeV/c). Effective Q cut-off, below which space-like showers are not evolved. Intrensic KT The Q2 = kT2 in as for space-like showers is scaled by PARP(64)! 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

34 Jet-Jet Correlations (DØ)
Df Jet#1-Jet#2 Jet#1-Jet#2 Df Distribution MidPoint Cone Algorithm (R = 0.7, fmerge = 0.5) L = 150 pb-1 (Phys. Rev. Lett (2005)) Data/NLO agreement good. Data/HERWIG agreement good. Data/PYTHIA agreement good provided PARP(67) = 1.0→4.0 (i.e. like Tune A, best fit 2.5). 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

35 CDF Run 1 PT(Z) PYTHIA 6.2 CTEQ5L
Parameter Tune DW Tune AW MSTP(81) 1 MSTP(82) 4 PARP(82) 1.9 GeV 2.0 GeV PARP(83) 0.5 PARP(84) 0.4 PARP(85) 1.0 0.9 PARP(86) 0.95 PARP(89) 1.8 TeV PARP(90) 0.25 PARP(62) 1.25 PARP(64) 0.2 PARP(67) 2.5 4.0 MSTP(91) PARP(91) 2.1 PARP(93) 15.0 UE Parameters ISR Parameters Shows the Run 1 Z-boson pT distribution (<pT(Z)> ≈ 11.5 GeV/c) compared with PYTHIA Tune DW, and HERWIG. Tune DW uses D0’s perfered value of PARP(67)! Intrensic KT Tune DW has a lower value of PARP(67) and slightly more MPI! 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

36 Tune A energy dependence!
PYTHIA 6.2 Tunes All use LO as with L = 192 MeV! Parameter Tune AW Tune DW Tune D6 PDF CTEQ5L CTEQ6L MSTP(81) 1 MSTP(82) 4 PARP(82) 2.0 GeV 1.9 GeV 1.8 GeV PARP(83) 0.5 PARP(84) 0.4 PARP(85) 0.9 1.0 PARP(86) 0.95 PARP(89) 1.8 TeV PARP(90) 0.25 PARP(62) 1.25 PARP(64) 0.2 PARP(67) 4.0 2.5 MSTP(91) PARP(91) 2.1 PARP(93) 15.0 UE Parameters Uses CTEQ6L Tune A energy dependence! (not the default) ISR Parameter Intrinsic KT 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

37 PYTHIA 6.2 Tunes These are “old” PYTHIA 6.2 tunes!
There are new tunes by Peter Skands (Tune S320, update of S0) Peter Skands (Tune N324, N0CR) Hendrik Hoeth (Tune P329, “Professor”) All use LO as with L = 192 MeV! Parameter Tune DWT Tune D6T ATLAS PDF CTEQ5L CTEQ6L MSTP(81) 1 MSTP(82) 4 PARP(82) GeV GeV 1.8 GeV PARP(83) 0.5 PARP(84) 0.4 PARP(85) 1.0 0.33 PARP(86) 0.66 PARP(89) 1.96 TeV 1.0 TeV PARP(90) 0.16 PARP(62) 1.25 PARP(64) 0.2 PARP(67) 2.5 MSTP(91) PARP(91) 2.1 PARP(93) 15.0 5.0 UE Parameters Tune B Tune AW Tune A ATLAS energy dependence! (PYTHIA default) Tune BW ISR Parameter Tune DW Tune D6 Tune D Tune D6T Intrinsic KT 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

38 JIMMY at CDF JIMMY was tuned to fit the energy density in the “transverse” region for “leading jet” events! JIMMY Runs with HERWIG and adds multiple parton interactions! PT(JIM)= 2.5 GeV/c. The Energy in the “Underlying Event” in High PT Jet Production The Drell-Yan JIMMY Tune PTJIM = 3.6 GeV/c, JMRAD(73) = 1.8 JMRAD(91) = 1.8 JIMMY: MPI J. M. Butterworth J. R. Forshaw M. H. Seymour PT(JIM)= 3.25 GeV/c. “Transverse” <Densities> vs PT(jet#1) 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

39 “Towards”, “Away”, “Transverse”
“Leading Jet” Factor of ~13 Factor of ~16 Factor of ~4.5 Data at 1.96 TeV on the density of charged particles, dN/dhdf, with pT > 0.5 GeV/c and |h| < 1 for “leading jet” events as a function of the leading jet pT for the “toward”, “away”, and “transverse” regions. The data are corrected to the particle level (with errors that include both the statistical error and the systematic uncertainty) and are compared with PYTHIA Tune A at the particle level (i.e. generator level). Data at 1.96 TeV on the charged particle scalar pT sum density, dPT/dhdf, with pT > 0.5 GeV/c and |h| < 1 for “leading jet” events as a function of the leading jet pT for the “toward”, “away”, and “transverse” regions. The data are corrected to the particle level (with errors that include both the statistical error and the systematic uncertainty) and are compared with PYTHIA Tune A at the particle level (i.e. generator level). Data at 1.96 TeV on the particle scalar ET sum density, dET/dhdf, for |h| < 1 for “leading jet” events as a function of the leading jet pT for the “toward”, “away”, and “transverse” regions. The data are corrected to the particle level (with errors that include both the statistical error and the systematic uncertainty) and are compared with PYTHIA Tune A at the particle level (i.e. generator level). 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

40 Charged Particle Density
H. Hoeth, HERWIG + JIMMY Tune (PTJIM = 3.6) Data at 1.96 TeV on the density of charged particles, dN/dhdf, with pT > 0.5 GeV/c and |h| < 1 for “Z-Boson” and “Leading Jet” events as a function of the leading jet pT or PT(Z) for the “toward”, “away”, and “transverse” regions. The data are corrected to the particle level (with errors that include both the statistical error and the systematic uncertainty) and are compared with PYTHIA Tune AW and Tune A, respectively, at the particle level (i.e. generator level). 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

41 Rick Field – Florida/CDF/CMS
Charged PTsum Density Data at 1.96 TeV on the charged scalar PTsum density, dPT/dhdf, with pT > 0.5 GeV/c and |h| < 1 for “Z-Boson” and “Leading Jet” events as a function of the leading jet pT or PT(Z) for the “toward”, “away”, and “transverse” regions. The data are corrected to the particle level (with errors that include both the statistical error and the systematic uncertainty) and are compared with PYTHIA Tune AW and Tune A, respectively, at the particle level (i.e. generator level). 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

42 The “TransMAX/MIN” Regions
Data at 1.96 TeV on the charged particle density, dN/dhdf, with pT > 0.5 GeV/c and |h| < 1 for “Z-Boson” and “Leading Jet” events as a function of PT(Z) or the leading jet pT for the “transMAX”, and “transMIN” regions. The data are corrected to the particle level (with errors that include both the statistical error and the systematic uncertainty) and are compared with PYTHIA Tune AW and Tune A, respectively, at the particle level (i.e. generator level). Data at 1.96 TeV on the density of charged particles, dN/dhdf, with pT > 0.5 GeV/c and |h| < 1 for “leading jet” events as a function of the leading jet pT and for Z-Boson events as a function of PT(Z) for “TransDIF” = “transMAX” minus “transMIN” regions. The data are corrected to the particle level (with errors that include both the statistical error and the systematic uncertainty) and are compared with PYTHIA Tune A and HERWIG (without MPI) at the particle level (i.e. generator level). 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

43 Charged Particle <pT>
H. Hoeth, Data at 1.96 TeV on the charged particle average pT, with pT > 0.5 GeV/c and |h| < 1 for the “toward” region for “Z-Boson” and the “transverse” region for “Leading Jet” events as a function of the leading jet pT or PT(Z). The data are corrected to the particle level (with errors that include both the statistical error and the systematic uncertainty) and are compared with PYTHIA Tune AW and Tune A, respectively, at the particle level (i.e. generator level). The Z-Boson data are also compared with PYTHIA Tune DW, the ATLAS tune, and HERWIG (without MPI) 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

44 Z-Boson: “Towards”, Transverse”, & “TransMIN” Charge Density
H. Hoeth, Data at 1.96 TeV on the density of charged particles, dN/dhdf, with pT > 0.5 GeV/c and |h| < 1 for “Z-Boson” events as a function of PT(Z) for the “toward” and “transverse” regions. The data are corrected to the particle level (with errors that include both the statistical error and the systematic uncertainty) and are compared with PYTHIA Tune AW and HERWIG (without MPI) at the particle level (i.e. generator level). 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

45 Z-Boson: “Towards” Region
≈2.6 ≈2.1 HERWIG (without MPI) small change! Tevatron LHC Data at 1.96 TeV on the density of charged particles, dN/dhdf, with pT > 0.5 GeV/c and |h| < 1 for “Z-Boson” events as a function of PT(Z) for the “toward” region. The data are corrected to the particle level (with errors that include both the statistical error and the systematic uncertainty) and are compared with PYTHIA Tune AW, Tune DW, PYTHIA ATLAS Tune, HERWIG (without MPI), and HERWIG (with JIMMY MPI) at the particle level (i.e. generator level). 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

46 Z-Boson: “Towards” Region
Tevatron LHC Data at 1.96 TeV on the the average pT of charged particles with pT > 0.5 GeV/c and |h| < 1 for “Z-Boson” events as a function of PT(Z) for the “toward” region. The data are corrected to the particle level (with errors that include both the statistical error and the systematic uncertainty) and are compared with PYTHIA Tune AW, Tune DW, PYTHIA ATLAS Tune, HERWIG (without MPI), and HERWIG (with JIMMY MPI) at the particle level (i.e. generator level). 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

47 Drell-Yan Production Tevatron vs LHC
Lepton-Pair Transverse Momentum <pT(m+m-)> is much larger at the LHC! Shapes of the pT(m+m-) distribution at the Z-boson mass. Z Average Lepton-Pair transverse momentum at the Tevatron and the LHC for PYTHIA Tune DW and HERWIG (without MPI). Shape of the Lepton-Pair pT distribution at the Z-boson mass at the Tevatron and the LHC for PYTHIA Tune DW and HERWIG (without MPI). 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

48 Leading Jet: “Transverse” Region
≈1.8 ≈2.2 Tevatron LHC Data at 1.96 TeV on the density of charged particles, dN/dhdf, with pT > 0.5 GeV/c and |h| < 1 for “Leading Jet” events as a function of PT(jet#1) for the “transverse” region. The data are corrected to the particle level (with errors that include both the statistical error and the systematic uncertainty) and are compared with PYTHIA Tune A, and HERWIG (without MPI) at the particle level (i.e. generator level). 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS

49 The LHC Physics Environment
Talk 2: Extrapolations from the Tevatron to RHIC and the LHC University of Wisconsin, Madison June 24th – July 2nd, 2009 Rick Field University of Florida Outline of Talk The Pythia MPI energy scaling parameter PARP(90). The “underlying event” at STAR. Extrapolations to RHIC. LHC predictions for the “underlying event” (hard scattering QCD & Drell-Yan). CDF Run 2 “Min-bias” and “pile-up” at the LHC. Correlations: charged particle <pT> versus the charged multiplicity in “min-bias” and Drell-Yan. Summary & Conclusions. CMS at the LHC Early LHC Thesis Projects. 2009 CTEQ Summer School June 30, 2009 Rick Field – Florida/CDF/CMS


Download ppt "The LHC Physics Environment"

Similar presentations


Ads by Google