Presentation is loading. Please wait.

Presentation is loading. Please wait.

V.L. Korotkikh (SINP MSU)

Similar presentations


Presentation on theme: "V.L. Korotkikh (SINP MSU)"— Presentation transcript:

1 V.L. Korotkikh (SINP MSU)
Perspectives of elliptic flow studies in AA and p-p collisions with CMS V.L. Korotkikh (SINP MSU) 14-19 September 2008, RDMS CMS, Minsk V.L. Korotkikh

2 MSU Perspectives of elliptic flow studies in AA and p-p collisions with CMS 1. Azimuthal Anisotropy in Heavy Ions Collisions with CMS Tracker, CMS Analysis Note 2007/004, Report QM2008 submitted to Yad. Fiz. 2008 G. Eyyubova , V.L. Korotkikh, I.P. Lokhtin, S.V.Petrushanko, L.I. Sarycheva, A.M. Snigirev (SINP MSU), D. Krofcheck(University of Auckland) 2. Elliptic flow in pp collisions and proton structure, Publication in preparation D. d’Enterria (CERN), G.Kh. Eyyubova, V.L. Korotkikh, I. P. Lokhtin, S.V. Petrushanko, L.I. Sarycheva,A. M. Snigirev (SINP MSU) 14-19 September 2008, RDMS CMS, Minsk V.L. Korotkikh

3 V2 in A+A 14-19 Sep 2008, RDMS CMS, Minsk V.L. Korotkikh

4 Non central А-А - collisions _______________________________________________________________
x y z transverse plane px py Kolb P.F., Heinz U., nucl-th/ (2003). Initial spatial anisotropy results in elliptic flow of finite particles. Azimuthal anisotropy of particles is a signature of termalizasion 14-19 Sep 2008, RDMS CMS, Minsk V.L. Korotkikh

5 r – azimuthal angle of reaction plane
RHIC data in Au+Au _______________________________________________________________ r – azimuthal angle of reaction plane n =2, 2 -- elliptic flow, V2 = 14-19 Sep 2008, RDMS CMS, Minsk V.L. Korotkikh

6 RHIC data in Au+Au _______________________________________________________________
The most bright RHIC result  scaled elliptic flow V2/nq is the same for all hadrons. It is signature of termalizasion on quark level ! 14-19 Sep 2008, RDMS CMS, Minsk V.L. Korotkikh

7 _______________________________________________________________
Energy dependence _______________________________________________________________ V2 = (LHC) 14-19 Sep 2008, RDMS CMS, Minsk V.L. Korotkikh

8 RHIC data on elliptic flow
_______________________________________________________________ Elliptic flow V2 normalized on initial space eccentricity  as a function of particle density in a unity of transverse overlap square AT of two nuclei. The curves are predictions of hydrodynamics with QGP and Hadron gas as initial states. Kolb P.F., Heinz U., nucl-th/ (2003). For lower energies (SPS, 17 GeV/A) thermodynamic equilibrium is not achieved. For RHIC energies ( GeV-A) the produced system is closed to equilibrium (see plato for STAR, PHOBOS data) 14-19 Sep 2008, RDMS CMS, Minsk V.L. Korotkikh 8

9 _______________________________________________________________
Elliptic flow measurements with CMS Tracker at LHC _______________________________________________________________ Our study Pb+Pb events (HYDJET 1.0) are generated at energy GeV/A at impact parameter value b=9 fm. Elliptic flow in HYDJET generator (I.P. Lokhtin and A.M.Snigirev, Eur. Phys. J. C 46, 211 (2006).) The flow is introduces for soft part of HYDJET generator. Spatial freeze out eccentricity is considered to be connected with initial eccentricity. The results are published in CMS AN 2007/004 “Azimuthal Anisotropy in Heavy Ions Collisions with the CMS Tracker” 14-19 Sep 2008, RDMS CMS, Minsk V.L. Korotkikh

10 Elliptic flow measurements with CMS at LHC _______________________________________________________________ Pb+Pb , 5500 GeV, 100k events * Simulated ▲ Reconstructed Our analysis is based on: CMS HI Group MIT data-base (HYDJET 1.0, jet quenching off) ORCA 8_13_3 b=9fm pT >0.9 GeV/c Track selection: nhit>12, cl>0.01 14-19 Sep 2008, RDMS CMS, Minsk V.L. Korotkikh

11 Elliptic flow measurements with CMS at LHC
_______________________________________________________________ V2 determination of CMS Tracker efficiency ○ - simulated values by HYDJET ■ - reconstructed in CMS Tracker by Event Plane method The uncertainties of CMS Tracker detector is not higher than 3% Methods of V2 extraction ○ - v2{EP} in simulated events ■ - original events ■ - Li-Yang method Large non-flow corrections 14-19 Sep 2008, RDMS CMS, Minsk V.L. Korotkikh

12 V2 in p+p Questions: 1. What for ? 2. Is it possible to measure ?
14-19 Sep 2008, RDMS CMS, Minsk V.L. Korotkikh

13 Motivation _______________________________________________________________
There are expectations that gluon density in the nucleon is comparable to one in nuclei . Ratio V2/ as a function of density 1/S dN/dy is comparable in p+p and A+A collisions. Thremalization regime may be achieved also in p-p collision in order to measure V2/ . There are the theoretical prediction (Frankfurt,2004) an impact parameter dependence of parton-proton interaction in the black disk regime (BDR ) . This regime will be increased at LHC. Our first results of V2 in pp show a strong dependence of V2(b) from spatial structure of proton. So it may be important in problem of nucleon structure. 14-19 Sep 2008, RDMS CMS, Minsk V.L. Korotkikh

14 Time evolution of the ratio v2/ _______________________________________________________________
In hydro, at a time of order R/cs where R = transverse size cs= sound velocity Au-Au R(Au)=6 fm b Bhalerao, Blaizot, Borghini, Ollitrault , nucl-th/ In hydro model the ratio doesn’t depend on size S of transverse overlap region 14-19 Sep 2008, RDMS CMS, Minsk V.L. Korotkikh

15 t1 (b)= t2 (b) – parton-proton thickness function.
Formalism of impact parameter dependence in p-p collision ____________________________________________________________________________ Cross section of p-p generic inelastic interaction The inelastic probability of p-p interaction is where  parton-medium cross-section. The proton-proton thickness function is equal to Here B – impact parameter between the centers of proton. t1 (b)= t2 (b) – parton-proton thickness function. 14-19 Sep 2008, RDMS CMS, Minsk V.L. Korotkikh

16 Formalism of impact parameter dependence in p-p collision ___________________________________________________________________________  diffuse edge of Fermi density  sharp edge of density (hard sphere) Then we calculate multiplicity N12 (B) , eccentricity (pp) of p-p and transverse overlap area S(pp). We fit the probability of proton -proton inelastic interaction Pin(B) and find the parameters of spatial density distribution (r) = (x,y,z) . We have three parameters: 0 , R and  14-19 Sep 2008, RDMS CMS, Minsk V.L. Korotkikh

17 Formalism of impact parameter dependence in p-p collision ____________________________________________________________________________ So, a density of binary parton-parton collisions is And we can calculate the eccentricity  of p-p where B is an impact parameter of two black body disks. Transverse overlap area of two disks is The average number of binary parton-parton collisions is 14-19 Sep 2008, RDMS CMS, Minsk V.L. Korotkikh

18 Inelastic probability Pin(b) from pp- collision _______________________________________________________________ It is possible to find the impact parameter dependence of the generic inelastic probability Pin(b) from experimental data of p-p collision at high energies. (Frankfurt,2004) We can do the inverse analysis and find nucleon thickness function t1,(b)= t2,(b) from Pin(b) , where t1,2(b) is overlap function of two nucleons. 14-19 Sep 2008, RDMS CMS, Minsk V.L. Korotkikh

19 Fit Pin(b) at LHC energies _______________________________________________________________
pp,LHC Fit Pin(b) R,fm 1.05 ,fm 0.29 0,mb 7.8 Rrms,fm 1.34 /R = 0.27 14-19 Sep 2008, RDMS CMS, Minsk V.L. Korotkikh

20 Nucleon density parameters from p+p collisions (CDF, SLAC) _______________________________________________________________ Different form of nucleon spatial density and different ratio diffuseness/radius 14-19 Sep 2008, RDMS CMS, Minsk V.L. Korotkikh

21 Nucleon parameters _______________________________________________________________
e+p (DESY) (charge density) p+p (SLAC) [Abe, CDF] Fermi, set 1 Fermi , set 2 Fermi , set 3 Hard sphere Rrms, ,fm 0.77 0.60 0.64 0.56 /R ? 0.20 0.50 0.80 0. F. Abe et al, Phys.Rev. C56(1997) 3811 pp,LHC Fit Pin(b) Fermi , set 2 Hard sphere Rrms,fm 1.34 0.90 0.81 /R 0.27 0.10 0. Our study: 14-19 Sep 2008, RDMS CMS, Minsk V.L. Korotkikh

22 Eccentricity at different size of proton edge _______________________________________________________________ >0   R = 0.   R =0.10 <0   R = 0.27 14-19 Sep 2008, RDMS CMS, Minsk V.L. Korotkikh

23 2 Eccentricity scaling and incomplete thermalization model _______________________________________________________________ There is a simple model based on eccentricity scaling and incomplete thermolization as a consequence of ideal-fluid dynamics. Here are  parton-medium cross-section (V2 /  )hydro -- thermodynamic limit value S --- transverse overlap area of nuclei dN/dy – multiplicity at y=0 Cs=1/sqrt(3) -- velocity of sound K0=0.7 (transport calculations) where dN/dy(y=0) from RHIC data S  calculated in A+A geometry H.J. Drescher et al, Phys.Rev. C76(2007)024905, [nucl-th/ ] (see also S.A. Voloshin, Report QM 2008) 14-19 Sep 2008, RDMS CMS, Minsk V.L. Korotkikh

24 Eccentricity scaling and incomplete thermalization _______________________________________________________________ There is a simple model based on eccentricity scaling and incomplete thermolization (see [3]). Two free parameters: (V2 /  )hydro and 0 where (V2 /  )hydro 0 , mb 0.22  0.01 5.5  0.5 (7.8) Fit of RHIC data H.J. Drescher et al, Phys.Rev. C76(2007)024905, [nucl-th/ ] 14-19 Sep 2008, RDMS CMS, Minsk V.L. Korotkikh

25 Eccentricity and elliptic flow (diffuse edge) ______________________________________________________________   R= 0.10 C=1.8 C=1. C=0 14-19 Sep 2008, RDMS CMS, Minsk V.L. Korotkikh

26 Eccentricity and elliptic flow _______________________________________________________________
Hard sphere Diffuse edge   R= 0.   R= 0.10   R= 0.27 C=0 C=1 C=1.8 C=0 C=1.8 C=0 14-19 Sep 2008, RDMS CMS, Minsk V.L. Korotkikh

27 Conclusion _______________________________________________________________
Elliptic flow V2 in Pb+Pb at LHC energies can be reconstructed with CMS Tracker with high accuracy( ±3% ). Error of flow V2 is about 10-20% depending on v2 calculation method. Elliptic flow in p+p collisions is very sensitive to the form of nucleon spatial density. If there is possibility to measure the V2 centrality dependence then it will be powerful tool to study a nucleon structure. 14-19 Sep 2008, RDMS CMS, Minsk V.L. Korotkikh 27 27

28 Back up slides 14-19 Sep 2008, RDMS CMS, Minsk V.L. Korotkikh

29 Formalism of impact parameter dependence in p-p collision ___________________________________________________________________________ Differential multiplicity of p-p is proportional to average number of binary parton-parton collisions or – centrality parameter of p-p collision We use dNppch (y=0)=5. from approximation data RHIC to LHC energy. 14-19 Sep 2008, RDMS CMS, Minsk V.L. Korotkikh

30 Transverse overlap area of two protons _______________________________________________________________   R = 0.27   R =0.10 0. 0. 14-19 Sep 2008, RDMS CMS, Minsk V.L. Korotkikh

31 Transverse overlap area and eccentricity of p-p collision _______________________________________________________________ Hard sphere ( ) and Fermi (_________) distribution S 1,2 0. 0.   R =0.10 1,2   R =0.27 14-19 Sep 2008, RDMS CMS, Minsk V.L. Korotkikh

32 Hard sphere (- - - - -) and Fermi (_________) distribution
Differential multiplicity as function of centrality c _______________________________________________________________ Hard sphere ( ) and Fermi (_________) distribution   R= 0.27   R= 0.10   R= 0.   R= 0. 14-19 Sep 2008, RDMS CMS, Minsk V.L. Korotkikh

33 Multiplicity density as function of centrality c _______________________________________________________________ Hard sphere ( ) and Fermi (_________) distribution   R= 0.   R= 0.   R= 0.27   R= 0.10 14-19 Sep 2008, RDMS CMS, Minsk V.L. Korotkikh

34 Eccentricity and elliptic flow (hard sphere) _______________________________________________________________   R= 0.0 C=1.8 C=1. C=0 14-19 Sep 2008, RDMS CMS, Minsk V.L. Korotkikh

35 Eccentricity and elliptic flow (diffuse edge) ______________________________________________________________   R= 0.27 C=1. C=0 14-19 Sep 2008, RDMS CMS, Minsk V.L. Korotkikh

36 Some excerpts of recent theoretical works _______________________________________________________________ At LHC energies the soft parton interactions take place in the disk edges and the hard parton interactions happen in more central region. L. Frankfurt et al, Phys.Rev. D69(2004)114010, [hep-ph/031123] 14-19 Sep 2008, RDMS CMS, Minsk V.L. Korotkikh


Download ppt "V.L. Korotkikh (SINP MSU)"

Similar presentations


Ads by Google