Presentation is loading. Please wait.

Presentation is loading. Please wait.

OTHER RATIONAL FUNCTIONS

Similar presentations


Presentation on theme: "OTHER RATIONAL FUNCTIONS"β€” Presentation transcript:

1 OTHER RATIONAL FUNCTIONS
The β€œdegree” of a function is the highest exponent that appears in the function. For example, 𝑓 π‘₯ = π‘₯ 3 βˆ’2 π‘₯ has a degree of three, since the highest exponent = 3.

2 OTHER RATIONAL FUNCTIONS
The β€œdegree” of a function is the highest exponent that appears in the function. For example, 𝑓 π‘₯ = π‘₯ 3 βˆ’2 π‘₯ has a degree of three, since the highest exponent = 3. More complicated rational functions have one or both of the polynomials with a degree higher than one. We will use the following chart to graph these functions…

3 OTHER RATIONAL FUNCTIONS
The β€œdegree” of a function is the highest exponent that appears in the function. For example, 𝑓 π‘₯ = π‘₯ 3 βˆ’2 π‘₯ has a degree of three, since the highest exponent = 3. More complicated rational functions have one or both of the polynomials with a degree higher than one. We will use the following chart to graph these functions… Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator

4 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 1 : Graph 𝑓 π‘₯ = π‘₯βˆ’1 π‘₯ 2 βˆ’π‘₯βˆ’6

5 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 1 : Graph 𝑓 π‘₯ = π‘₯βˆ’1 π‘₯ 2 βˆ’π‘₯βˆ’6 = π‘₯βˆ’1 π‘₯βˆ’3 π‘₯+2 Roots of the denominator are : π‘₯=3,βˆ’2 ( vertical asymptotes )

6 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 1 : Graph 𝑓 π‘₯ = π‘₯βˆ’1 π‘₯ 2 βˆ’π‘₯βˆ’6 = π‘₯βˆ’1 π‘₯βˆ’3 π‘₯+2 Roots of the denominator are : π‘₯=3,βˆ’2 ( vertical asymptotes ) Graph them…

7 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 1 : Graph 𝑓 π‘₯ = π‘₯βˆ’1 π‘₯ 2 βˆ’π‘₯βˆ’6 = π‘₯βˆ’1 π‘₯βˆ’3 π‘₯+2 Roots of the denominator are : π‘₯=3,βˆ’2 ( vertical asymptotes ) Degree of numerator = 1 Degree of denominator = 2 n < k so x – axis is horizontal asymptote

8 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 1 : Graph 𝑓 π‘₯ = π‘₯βˆ’1 π‘₯ 2 βˆ’π‘₯βˆ’6 = π‘₯βˆ’1 π‘₯βˆ’3 π‘₯+2 Roots of the denominator are : π‘₯=3,βˆ’2 ( vertical asymptotes ) Degree of numerator = 1 Degree of denominator = 2 n < k so x – axis is horizontal asymptote Graph it …

9 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 1 : Graph 𝑓 π‘₯ = π‘₯βˆ’1 π‘₯ 2 βˆ’π‘₯βˆ’6 = π‘₯βˆ’1 π‘₯βˆ’3 π‘₯+2 Roots of the denominator are : π‘₯=3,βˆ’2 ( vertical asymptotes ) ** these are the graphs where the sketch could cross the horizontal asymptote

10 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 1 : Graph 𝑓 π‘₯ = π‘₯βˆ’1 π‘₯ 2 βˆ’π‘₯βˆ’6 = π‘₯βˆ’1 π‘₯βˆ’3 π‘₯+2 Roots of the denominator are : π‘₯=3,βˆ’2 ( vertical asymptotes ) Now test values on each interval. I like to find the y – intercept and stay close to the vertical asymptotes.

11 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 1 : Graph 𝑓 π‘₯ = π‘₯βˆ’1 π‘₯ 2 βˆ’π‘₯βˆ’6 = π‘₯βˆ’1 π‘₯βˆ’3 π‘₯+2 Roots of the denominator are : π‘₯=3,βˆ’2 ( vertical asymptotes ) Now test values on each interval. I like to find the y – intercept and stay close to the vertical asymptotes. 𝑓 0 = 0βˆ’ βˆ’0βˆ’6 = 1 6

12 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 1 : Graph 𝑓 π‘₯ = π‘₯βˆ’1 π‘₯ 2 βˆ’π‘₯βˆ’6 = π‘₯βˆ’1 π‘₯βˆ’3 π‘₯+2 Roots of the denominator are : π‘₯=3,βˆ’2 ( vertical asymptotes ) Now test values on each interval. I like to find the y – intercept and stay close to the vertical asymptotes. 𝑓 0 = 0βˆ’ βˆ’0βˆ’6 = 1 6 𝑓 βˆ’4 = βˆ’4βˆ’1 (βˆ’4) 2 βˆ’(βˆ’4)βˆ’6 =βˆ’0.4

13 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 1 : Graph 𝑓 π‘₯ = π‘₯βˆ’1 π‘₯ 2 βˆ’π‘₯βˆ’6 = π‘₯βˆ’1 π‘₯βˆ’3 π‘₯+2 Roots of the denominator are : π‘₯=3,βˆ’2 ( vertical asymptotes ) Now test values on each interval. I like to find the y – intercept and stay close to the vertical asymptotes. 𝑓 0 = 0βˆ’ βˆ’0βˆ’6 = 1 6 𝑓 βˆ’4 = βˆ’4βˆ’1 (βˆ’4) 2 βˆ’(βˆ’4)βˆ’6 =βˆ’0.4 𝑓 βˆ’3 = βˆ’3βˆ’1 (βˆ’3) 2 βˆ’(βˆ’3)βˆ’6 =βˆ’0.7

14 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 1 : Graph 𝑓 π‘₯ = π‘₯βˆ’1 π‘₯ 2 βˆ’π‘₯βˆ’6 = π‘₯βˆ’1 π‘₯βˆ’3 π‘₯+2 Roots of the denominator are : π‘₯=3,βˆ’2 ( vertical asymptotes ) Now test values on each interval. I like to find the y – intercept and stay close to the vertical asymptotes. 𝑓 0 = 0βˆ’ βˆ’0βˆ’6 = 1 6 𝑓 βˆ’4 = βˆ’4βˆ’1 (βˆ’4) 2 βˆ’(βˆ’4)βˆ’6 =βˆ’0.4 𝑓 βˆ’3 = βˆ’3βˆ’1 (βˆ’3) 2 βˆ’(βˆ’3)βˆ’6 =βˆ’0.7 𝑓 βˆ’1 = βˆ’1βˆ’1 (βˆ’1) 2 βˆ’(βˆ’1)βˆ’6 =0.5

15 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 1 : Graph 𝑓 π‘₯ = π‘₯βˆ’1 π‘₯ 2 βˆ’π‘₯βˆ’6 = π‘₯βˆ’1 π‘₯βˆ’3 π‘₯+2 Roots of the denominator are : π‘₯=3,βˆ’2 ( vertical asymptotes ) Now test values on each interval. I like to find the y – intercept and stay close to the vertical asymptotes. 𝑓 0 = 0βˆ’ βˆ’0βˆ’6 = 1 6 𝑓 βˆ’4 = βˆ’4βˆ’1 (βˆ’4) 2 βˆ’(βˆ’4)βˆ’6 =βˆ’0.4 𝑓 βˆ’3 = βˆ’3βˆ’1 (βˆ’3) 2 βˆ’(βˆ’3)βˆ’6 =βˆ’0.7 𝑓 βˆ’1 = βˆ’1βˆ’1 (βˆ’1) 2 βˆ’(βˆ’1)βˆ’6 =0.5 𝑓 1 = 1βˆ’1 (1) 2 βˆ’(1)βˆ’6 =0

16 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 1 : Graph 𝑓 π‘₯ = π‘₯βˆ’1 π‘₯ 2 βˆ’π‘₯βˆ’6 = π‘₯βˆ’1 π‘₯βˆ’3 π‘₯+2 Roots of the denominator are : π‘₯=3,βˆ’2 ( vertical asymptotes ) Now test values on each interval. I like to find the y – intercept and stay close to the vertical asymptotes. 𝑓 0 = 0βˆ’ βˆ’0βˆ’6 = 1 6 𝑓 2 = 2βˆ’1 (2) 2 βˆ’(2)βˆ’6 =βˆ’0.25 𝑓 βˆ’4 = βˆ’4βˆ’1 (βˆ’4) 2 βˆ’(βˆ’4)βˆ’6 =βˆ’0.4 𝑓 βˆ’3 = βˆ’3βˆ’1 (βˆ’3) 2 βˆ’(βˆ’3)βˆ’6 =βˆ’0.7 𝑓 βˆ’1 = βˆ’1βˆ’1 (βˆ’1) 2 βˆ’(βˆ’1)βˆ’6 =0.5 𝑓 1 = 1βˆ’1 (1) 2 βˆ’(1)βˆ’6 =0

17 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 1 : Graph 𝑓 π‘₯ = π‘₯βˆ’1 π‘₯ 2 βˆ’π‘₯βˆ’6 = π‘₯βˆ’1 π‘₯βˆ’3 π‘₯+2 Roots of the denominator are : π‘₯=3,βˆ’2 ( vertical asymptotes ) Now test values on each interval. I like to find the y – intercept and stay close to the vertical asymptotes. 𝑓 0 = 0βˆ’ βˆ’0βˆ’6 = 1 6 𝑓 2 = 2βˆ’1 (2) 2 βˆ’(2)βˆ’6 =βˆ’0.25 𝑓 βˆ’4 = βˆ’4βˆ’1 (βˆ’4) 2 βˆ’(βˆ’4)βˆ’6 =βˆ’0.4 𝑓 4 = 4βˆ’1 (4) 2 βˆ’(4)βˆ’6 =0.5 𝑓 βˆ’3 = βˆ’3βˆ’1 (βˆ’3) 2 βˆ’(βˆ’3)βˆ’6 =βˆ’0.7 𝑓 βˆ’1 = βˆ’1βˆ’1 (βˆ’1) 2 βˆ’(βˆ’1)βˆ’6 =0.5 𝑓 1 = 1βˆ’1 (1) 2 βˆ’(1)βˆ’6 =0

18 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 1 : Graph 𝑓 π‘₯ = π‘₯βˆ’1 π‘₯ 2 βˆ’π‘₯βˆ’6 = π‘₯βˆ’1 π‘₯βˆ’3 π‘₯+2 Roots of the denominator are : π‘₯=3,βˆ’2 ( vertical asymptotes ) Now test values on each interval. I like to find the y – intercept and stay close to the vertical asymptotes. 𝑓 0 = 0βˆ’ βˆ’0βˆ’6 = 1 6 𝑓 2 = 2βˆ’1 (2) 2 βˆ’(2)βˆ’6 =βˆ’0.25 𝑓 βˆ’4 = βˆ’4βˆ’1 (βˆ’4) 2 βˆ’(βˆ’4)βˆ’6 =βˆ’0.4 𝑓 4 = 4βˆ’1 (4) 2 βˆ’(4)βˆ’6 =0.5 𝑓 5 = 5βˆ’1 (5) 2 βˆ’(5)βˆ’6 =0.3 𝑓 βˆ’3 = βˆ’3βˆ’1 (βˆ’3) 2 βˆ’(βˆ’3)βˆ’6 =βˆ’0.7 𝑓 βˆ’1 = βˆ’1βˆ’1 (βˆ’1) 2 βˆ’(βˆ’1)βˆ’6 =0.5 𝑓 1 = 1βˆ’1 (1) 2 βˆ’(1)βˆ’6 =0

19 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 1 : Graph 𝑓 π‘₯ = π‘₯βˆ’1 π‘₯ 2 βˆ’π‘₯βˆ’6 = π‘₯βˆ’1 π‘₯βˆ’3 π‘₯+2 Roots of the denominator are : π‘₯=3,βˆ’2 ( vertical asymptotes ) Now sketch the graph for each interval…

20 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 2 : Graph 𝑓 π‘₯ = 2 π‘₯ 2 π‘₯ 2 +π‘₯βˆ’2

21 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 2 : Graph 𝑓 π‘₯ = 2 π‘₯ 2 π‘₯ 2 +π‘₯βˆ’2 = 2 π‘₯ 2 π‘₯+2 π‘₯βˆ’1 Roots of the denominator are : π‘₯=βˆ’2, +1 ( vertical asymptotes )

22 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 2 : Graph 𝑓 π‘₯ = 2 π‘₯ 2 π‘₯ 2 +π‘₯βˆ’2 = 2 π‘₯ 2 π‘₯+2 π‘₯βˆ’1 Roots of the denominator are : π‘₯=βˆ’2, +1 ( vertical asymptotes ) Graph them…

23 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 2 : Graph 𝑓 π‘₯ = 2 π‘₯ 2 π‘₯ 2 +π‘₯βˆ’2 = 2 π‘₯ 2 π‘₯+2 π‘₯βˆ’1 Roots of the denominator are : π‘₯=βˆ’2, +1 ( vertical asymptotes ) Degree of numerator = 2 Degree of denominator = 2 n = k so 𝑦= π‘Ž 𝑐 = 2 1 =2 is horizontal asymptote

24 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 2 : Graph 𝑓 π‘₯ = 2 π‘₯ 2 π‘₯ 2 +π‘₯βˆ’2 = 2 π‘₯ 2 π‘₯+2 π‘₯βˆ’1 Roots of the denominator are : π‘₯=βˆ’2, +1 ( vertical asymptotes ) Degree of numerator = 2 Degree of denominator = 2 n = k so 𝑦= π‘Ž 𝑐 = 2 1 =2 is horizontal asymptote Graph it …

25 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 2 : Graph 𝑓 π‘₯ = 2 π‘₯ 2 π‘₯ 2 +π‘₯βˆ’2 = 2 π‘₯ 2 π‘₯+2 π‘₯βˆ’1 Roots of the denominator are : π‘₯=βˆ’2, +1 ( vertical asymptotes ) Now test values on each interval. I like to find the y – intercept and stay close to the vertical asymptotes.

26 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 2 : Graph 𝑓 π‘₯ = 2 π‘₯ 2 π‘₯ 2 +π‘₯βˆ’2 = 2 π‘₯ 2 π‘₯+2 π‘₯βˆ’1 Roots of the denominator are : π‘₯=βˆ’2, +1 ( vertical asymptotes ) Now test values on each interval. I like to find the y – intercept and stay close to the vertical asymptotes. 𝑓 0 = 2 (0) 2 (0) 2 +(0)βˆ’2 =0

27 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 2 : Graph 𝑓 π‘₯ = 2 π‘₯ 2 π‘₯ 2 +π‘₯βˆ’2 = 2 π‘₯ 2 π‘₯+2 π‘₯βˆ’1 Roots of the denominator are : π‘₯=βˆ’2, +1 ( vertical asymptotes ) Now test values on each interval. I like to find the y – intercept and stay close to the vertical asymptotes. 𝑓 0 = 2 (0) 2 (0) 2 +(0)βˆ’2 =0 𝑓 βˆ’1 = 2 (βˆ’1) 2 (βˆ’1) 2 +(βˆ’1)βˆ’2 =βˆ’1

28 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 2 : Graph 𝑓 π‘₯ = 2 π‘₯ 2 π‘₯ 2 +π‘₯βˆ’2 = 2 π‘₯ 2 π‘₯+2 π‘₯βˆ’1 Roots of the denominator are : π‘₯=βˆ’2, +1 ( vertical asymptotes ) Now test values on each interval. I like to find the y – intercept and stay close to the vertical asymptotes. 𝑓 0 = 2 (0) 2 (0) 2 +(0)βˆ’2 =0 𝑓 βˆ’1 = 2 (βˆ’1) 2 (βˆ’1) 2 +(βˆ’1)βˆ’2 =βˆ’1 𝑓 βˆ’1.5 = 2 (βˆ’1.5) 2 (βˆ’1.5) 2 +(βˆ’1.5)βˆ’2 =βˆ’3.6

29 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 2 : Graph 𝑓 π‘₯ = 2 π‘₯ 2 π‘₯ 2 +π‘₯βˆ’2 = 2 π‘₯ 2 π‘₯+2 π‘₯βˆ’1 Roots of the denominator are : π‘₯=βˆ’2, +1 ( vertical asymptotes ) Now test values on each interval. I like to find the y – intercept and stay close to the vertical asymptotes. 𝑓 0 = 2 (0) 2 (0) 2 +(0)βˆ’2 =0 𝑓 βˆ’1 = 2 (βˆ’1) 2 (βˆ’1) 2 +(βˆ’1)βˆ’2 =βˆ’1 𝑓 βˆ’1.5 = 2 (βˆ’1.5) 2 (βˆ’1.5) 2 +(βˆ’1.5)βˆ’2 =βˆ’3.6 𝑓 0.5 = 2 (0.5) 2 (0.5) 2 +(0.5)βˆ’2 =βˆ’0.4

30 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 2 : Graph 𝑓 π‘₯ = 2 π‘₯ 2 π‘₯ 2 +π‘₯βˆ’2 = 2 π‘₯ 2 π‘₯+2 π‘₯βˆ’1 Roots of the denominator are : π‘₯=βˆ’2, +1 ( vertical asymptotes ) Now test values on each interval. I like to find the y – intercept and stay close to the vertical asymptotes. 𝑓 0 = 2 (0) 2 (0) 2 +(0)βˆ’2 =0 𝑓 βˆ’1 = 2 (βˆ’1) 2 (βˆ’1) 2 +(βˆ’1)βˆ’2 =βˆ’1 𝑓 βˆ’1.5 = 2 (βˆ’1.5) 2 (βˆ’1.5) 2 +(βˆ’1.5)βˆ’2 =βˆ’3.6 𝑓 0.5 = 2 (0.5) 2 (0.5) 2 +(0.5)βˆ’2 =βˆ’0.4 𝑓 βˆ’3 = 2 (βˆ’3) 2 (βˆ’3) 2 +(βˆ’3)βˆ’2 =4.5

31 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 2 : Graph 𝑓 π‘₯ = 2 π‘₯ 2 π‘₯ 2 +π‘₯βˆ’2 = 2 π‘₯ 2 π‘₯+2 π‘₯βˆ’1 Roots of the denominator are : π‘₯=βˆ’2, +1 ( vertical asymptotes ) Now test values on each interval. I like to find the y – intercept and stay close to the vertical asymptotes. 𝑓 0 = 2 (0) 2 (0) 2 +(0)βˆ’2 =0 𝑓 βˆ’4 = 2 (βˆ’4) 2 (βˆ’4) 2 +(βˆ’4)βˆ’2 =4.5 𝑓 βˆ’1 = 2 (βˆ’1) 2 (βˆ’1) 2 +(βˆ’1)βˆ’2 =βˆ’1 𝑓 βˆ’1.5 = 2 (βˆ’1.5) 2 (βˆ’1.5) 2 +(βˆ’1.5)βˆ’2 =βˆ’3.6 𝑓 0.5 = 2 (0.5) 2 (0.5) 2 +(0.5)βˆ’2 =βˆ’0.4 𝑓 βˆ’3 = 2 (βˆ’3) 2 (βˆ’3) 2 +(βˆ’3)βˆ’2 =4.5

32 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 2 : Graph 𝑓 π‘₯ = 2 π‘₯ 2 π‘₯ 2 +π‘₯βˆ’2 = 2 π‘₯ 2 π‘₯+2 π‘₯βˆ’1 Roots of the denominator are : π‘₯=βˆ’2, +1 ( vertical asymptotes ) Now test values on each interval. I like to find the y – intercept and stay close to the vertical asymptotes. 𝑓 0 = 2 (0) 2 (0) 2 +(0)βˆ’2 =0 𝑓 βˆ’4 = 2 (βˆ’4) 2 (βˆ’4) 2 +(βˆ’4)βˆ’2 =4.5 𝑓 βˆ’1 = 2 (βˆ’1) 2 (βˆ’1) 2 +(βˆ’1)βˆ’2 =βˆ’1 𝑓 2 = 2 (2) 2 (2) 2 +(2)βˆ’2 =2 𝑓 βˆ’1.5 = 2 (βˆ’1.5) 2 (βˆ’1.5) 2 +(βˆ’1.5)βˆ’2 =βˆ’3.6 𝑓 0.5 = 2 (0.5) 2 (0.5) 2 +(0.5)βˆ’2 =βˆ’0.4 𝑓 βˆ’3 = 2 (βˆ’3) 2 (βˆ’3) 2 +(βˆ’3)βˆ’2 =4.5

33 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 2 : Graph 𝑓 π‘₯ = 2 π‘₯ 2 π‘₯ 2 +π‘₯βˆ’2 = 2 π‘₯ 2 π‘₯+2 π‘₯βˆ’1 Roots of the denominator are : π‘₯=βˆ’2, +1 ( vertical asymptotes ) Now test values on each interval. I like to find the y – intercept and stay close to the vertical asymptotes. 𝑓 0 = 2 (0) 2 (0) 2 +(0)βˆ’2 =0 𝑓 βˆ’4 = 2 (βˆ’4) 2 (βˆ’4) 2 +(βˆ’4)βˆ’2 =4.5 𝑓 βˆ’1 = 2 (βˆ’1) 2 (βˆ’1) 2 +(βˆ’1)βˆ’2 =βˆ’1 𝑓 2 = 2 (2) 2 (2) 2 +(2)βˆ’2 =2 𝑓 βˆ’1.5 = 2 (βˆ’1.5) 2 (βˆ’1.5) 2 +(βˆ’1.5)βˆ’2 =βˆ’3.6 𝑓 3 = 2 (3) 2 (3) 2 +(3)βˆ’2 =1.8 𝑓 0.5 = 2 (0.5) 2 (0.5) 2 +(0.5)βˆ’2 =βˆ’0.4 𝑓 βˆ’3 = 2 (βˆ’3) 2 (βˆ’3) 2 +(βˆ’3)βˆ’2 =4.5

34 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 2 : Graph 𝑓 π‘₯ = 2 π‘₯ 2 π‘₯ 2 +π‘₯βˆ’2 = 2 π‘₯ 2 π‘₯+2 π‘₯βˆ’1 Roots of the denominator are : π‘₯=βˆ’2, +1 ( vertical asymptotes ) Now sketch the graph for each interval…

35 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 3 : Graph 𝑓 π‘₯ = π‘₯ 2 +1 π‘₯βˆ’1

36 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 3 : Graph 𝑓 π‘₯ = π‘₯ 2 +1 π‘₯βˆ’1 Roots of the denominator are : π‘₯=1 ( vertical asymptotes )

37 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 3 : Graph 𝑓 π‘₯ = π‘₯ 2 +1 π‘₯βˆ’1 Roots of the denominator are : π‘₯=1 ( vertical asymptotes ) Graph it…

38 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 3 : Graph 𝑓 π‘₯ = π‘₯ 2 +1 π‘₯βˆ’1 Roots of the denominator are : π‘₯=1 ( vertical asymptotes ) Degree of numerator = 2 Degree of denominator = 1 n > k so no horizontal asymptote

39 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 3 : Graph 𝑓 π‘₯ = π‘₯ 2 +1 π‘₯βˆ’1 Roots of the denominator are : π‘₯=1 ( vertical asymptotes ) Degree of numerator = 2 Degree of denominator = 1 n > k so no horizontal asymptote There is however an oblique ( slanted ) asymptote.

40 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 3 : Graph 𝑓 π‘₯ = π‘₯ 2 +1 π‘₯βˆ’1 Roots of the denominator are : π‘₯=1 ( vertical asymptotes ) Degree of numerator = 2 Degree of denominator = 1 n > k so no horizontal asymptote There is however an oblique ( slanted ) asymptote. These occur when n > k…

41 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 3 : Graph 𝑓 π‘₯ = π‘₯ 2 +1 π‘₯βˆ’1 Roots of the denominator are : π‘₯=1 ( vertical asymptotes ) Degree of numerator = 2 Degree of denominator = 1 n > k so no horizontal asymptote There is however an oblique ( slanted ) asymptote. These occur when n > k… To find the oblique asymptote, use synthetic division…

42 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 3 : Graph 𝑓 π‘₯ = π‘₯ 2 +1 π‘₯βˆ’1 Roots of the denominator are : π‘₯=1 ( vertical asymptotes ) Degree of numerator = 2 Degree of denominator = 1 n > k so no horizontal asymptote There is however an oblique ( slanted ) asymptote. These occur when n > k… To find the oblique asymptote, use synthetic division… 1 1 1 + 1

43 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 3 : Graph 𝑓 π‘₯ = π‘₯ 2 +1 π‘₯βˆ’1 Roots of the denominator are : π‘₯=1 ( vertical asymptotes ) Degree of numerator = 2 Degree of denominator = 1 n > k so no horizontal asymptote There is however an oblique ( slanted ) asymptote. These occur when n > k… To find the oblique asymptote, use synthetic division… 1 1 1 1 1 + 1 1 2

44 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 3 : Graph 𝑓 π‘₯ = π‘₯ 2 +1 π‘₯βˆ’1 Roots of the denominator are : π‘₯=1 ( vertical asymptotes ) Degree of numerator = 2 Degree of denominator = 1 n > k so no horizontal asymptote There is however an oblique ( slanted ) asymptote. These occur when n > k… To find the oblique asymptote, use synthetic division… 1 1 1 This gives us : π‘₯ π‘₯βˆ’1 where 2 π‘₯βˆ’1 is a remainder 1 1 + 1 1 2

45 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 3 : Graph 𝑓 π‘₯ = π‘₯ 2 +1 π‘₯βˆ’1 Roots of the denominator are : π‘₯=1 ( vertical asymptotes ) Degree of numerator = 2 Degree of denominator = 1 n > k so no horizontal asymptote There is however an oblique ( slanted ) asymptote. These occur when n > k… To find the oblique asymptote, use synthetic division… 1 1 1 This gives us : π‘₯ π‘₯βˆ’1 where 2 π‘₯βˆ’1 is a remainder 1 1 + 1 1 2 We will use only the (π‘₯+1) part of the answer …

46 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 3 : Graph 𝑓 π‘₯ = π‘₯ 2 +1 π‘₯βˆ’1 Roots of the denominator are : π‘₯=1 ( vertical asymptotes ) Degree of numerator = 2 Degree of denominator = 1 n > k so no horizontal asymptote There is however an oblique ( slanted ) asymptote. These occur when n > k… To find the oblique asymptote, use synthetic division… 1 1 1 This gives us : π‘₯ π‘₯βˆ’1 where 2 π‘₯βˆ’1 is a remainder 1 1 + 1 1 2 The oblique asymptote will be 𝑦=(π‘₯+1)

47 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 3 : Graph 𝑓 π‘₯ = π‘₯ 2 +1 π‘₯βˆ’1 Roots of the denominator are : π‘₯=1 ( vertical asymptotes ) Degree of numerator = 2 Degree of denominator = 1 n > k so no horizontal asymptote There is however an oblique ( slanted ) asymptote. These occur when n > k… To find the oblique asymptote, use synthetic division… 1 1 1 This gives us : π‘₯ π‘₯βˆ’1 where 2 π‘₯βˆ’1 is a remainder 1 1 + 1 1 2 Graph it… The oblique asymptote will be 𝑦=(π‘₯+1)

48 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 3 : Graph 𝑓 π‘₯ = π‘₯ 2 +1 π‘₯βˆ’1 Roots of the denominator are : π‘₯=1 ( vertical asymptotes ) Once again, I like to find the y – intercept and choose some values near any vertical asymptote… 𝑓 0 = βˆ’1 =βˆ’1

49 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 3 : Graph 𝑓 π‘₯ = π‘₯ 2 +1 π‘₯βˆ’1 Roots of the denominator are : π‘₯=1 ( vertical asymptotes ) Once again, I like to find the y – intercept and choose some values near any vertical asymptote… 𝑓 0 = βˆ’1 =βˆ’1 𝑓 βˆ’2 = (βˆ’2) 2 +1 (βˆ’2)βˆ’1 =βˆ’1.7

50 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 3 : Graph 𝑓 π‘₯ = π‘₯ 2 +1 π‘₯βˆ’1 Roots of the denominator are : π‘₯=1 ( vertical asymptotes ) Once again, I like to find the y – intercept and choose some values near any vertical asymptote… 𝑓 0 = βˆ’1 =βˆ’1 𝑓 βˆ’2 = (βˆ’2) 2 +1 (βˆ’2)βˆ’1 =βˆ’1.7 𝑓 0.5 = (0.5) 2 +1 (0.5)βˆ’1 =βˆ’2.5

51 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 3 : Graph 𝑓 π‘₯ = π‘₯ 2 +1 π‘₯βˆ’1 Roots of the denominator are : π‘₯=1 ( vertical asymptotes ) Once again, I like to find the y – intercept and choose some values near any vertical asymptote… 𝑓 0 = βˆ’1 =βˆ’1 𝑓 βˆ’2 = (βˆ’2) 2 +1 (βˆ’2)βˆ’1 =βˆ’1.7 𝑓 0.5 = (0.5) 2 +1 (0.5)βˆ’1 =βˆ’2.5 𝑓 1.5 = (1.5) 2 +1 (1.5)βˆ’1 =6.5

52 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 3 : Graph 𝑓 π‘₯ = π‘₯ 2 +1 π‘₯βˆ’1 Roots of the denominator are : π‘₯=1 ( vertical asymptotes ) Once again, I like to find the y – intercept and choose some values near any vertical asymptote… 𝑓 0 = βˆ’1 =βˆ’1 𝑓 2 = (2) 2 +1 (2)βˆ’1 =5 𝑓 βˆ’2 = (βˆ’2) 2 +1 (βˆ’2)βˆ’1 =βˆ’1.7 𝑓 0.5 = (0.5) 2 +1 (0.5)βˆ’1 =βˆ’2.5 𝑓 1.5 = (1.5) 2 +1 (1.5)βˆ’1 =6.5

53 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 3 : Graph 𝑓 π‘₯ = π‘₯ 2 +1 π‘₯βˆ’1 Roots of the denominator are : π‘₯=1 ( vertical asymptotes ) Once again, I like to find the y – intercept and choose some values near any vertical asymptote… 𝑓 0 = βˆ’1 =βˆ’1 𝑓 2 = (2) 2 +1 (2)βˆ’1 =5 𝑓 βˆ’2 = (βˆ’2) 2 +1 (βˆ’2)βˆ’1 =βˆ’1.7 𝑓 4 = (4) 2 +1 (4)βˆ’1 =5.7 𝑓 0.5 = (0.5) 2 +1 (0.5)βˆ’1 =βˆ’2.5 𝑓 1.5 = (1.5) 2 +1 (1.5)βˆ’1 =6.5

54 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 3 : Graph 𝑓 π‘₯ = π‘₯ 2 +1 π‘₯βˆ’1 Roots of the denominator are : π‘₯=1 ( vertical asymptotes ) Now sketch your graph on each interval…

55 OTHER RATIONAL FUNCTIONS
Let 𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 + βˆ™βˆ™βˆ™ 𝑐 π‘₯ π‘˜ + βˆ™βˆ™βˆ™ be a rational function whose numerator has degree n and whose denominator has degree k . If 𝑛=π‘˜ , then the line 𝑦=π‘Ž/𝑐 is a horizontal asymptote If 𝑛<π‘˜ , then the x – axis is a horizontal asymptote If 𝑛>π‘˜ , then there is no horizontal asymptote ( it will be oblique ) ** vertical asymptotes will still be roots of the denominator EXAMPLE # 3 : Graph 𝑓 π‘₯ = π‘₯ 2 +1 π‘₯βˆ’1 Roots of the denominator are : π‘₯=1 ( vertical asymptotes ) Now sketch your graph on each interval…


Download ppt "OTHER RATIONAL FUNCTIONS"

Similar presentations


Ads by Google