Presentation is loading. Please wait.

Presentation is loading. Please wait.

Elements of Quantum Mechanics

Similar presentations


Presentation on theme: "Elements of Quantum Mechanics"β€” Presentation transcript:

1 Elements of Quantum Mechanics
Chapter 2 Elements of Quantum Mechanics Classical (Newtonian) mechanics is inaccurate when applied to electrons in crystals or any systems with atomic dimensions. Quantum mechanics is necessary background knowledge for understanding electrons in crystals.

2 THE QUANTUM CONCEPT Blackbody Radiation 𝐡 Ξ» = 2π‘π‘˜π‘‡ Ξ»4 𝐸𝑛=π§β„Žπœˆ=π‘›β„πœ”
An opaque non-reflective ideal body classical model, assuming continuum of allowed energy (valid for long wave length) 𝐡 Ξ» = 2π‘π‘˜π‘‡ Ξ»4 real observation explained by Max Planck, assuming discrete energy spectrum 𝐸𝑛=π§β„Žπœˆ=π‘›β„πœ” 𝐧=0, 1, 2, 3,……… 𝐡 Ξ» = 2β„Žπ‘2 Ξ»5 1 𝑒 β„Žπ‘/Ξ»π‘˜π‘‡ βˆ’1 Vibrating atoms in a material can only radiate or absorb energy in discrete packets (energy quantization) Ξ» (πœ‡m)

3 The Bohr Atom 𝐿𝑛=π‘š0Κ‹ π‘Ÿ 𝑛 =𝒏ℏ For the simple hydrogen atom with Z = 1,
Postulations: Electrons exist in certain stable circular orbits. Electrons can shift between orbitals by gaining or losing energy. Angular momentum is quantized. 𝐿𝑛=π‘š0Κ‹ π‘Ÿ 𝑛 =𝒏ℏ 𝐧=1, 2, 3,……… centripetal force βˆ’π‘ž +π‘ž π‘Ÿπ‘› 𝐧=1 𝐧=2 𝐧=3 = π‘š0Κ‹2 π‘Ÿπ‘› Continuous energy radiation electromagnetic radiation Coulombl force = π‘ž2 4πœ‹πœ–0 π‘Ÿ 𝑛 2 Classically, accelerating charge radiates electro magnetic wave.

4 π‘Ÿπ‘›= 4πœ‹πœ–0 𝒏ℏ 2 π‘š0π‘ž2 π‘š0Κ‹2 π‘Ÿπ‘› = π‘ž2 4πœ‹πœ–0 π‘Ÿ 𝑛 2 P.E = - π‘ž2 4πœ‹πœ–0π‘Ÿπ‘›
π‘š0Κ‹2 π‘Ÿπ‘› = π‘ž2 4πœ‹πœ–0 π‘Ÿ 𝑛 2 K.E = 1 2 π‘š0Κ‹2= 1 2 ( π‘ž2 4πœ‹πœ–0π‘Ÿπ‘› ) P.E = - π‘ž2 4πœ‹πœ–0π‘Ÿπ‘› E = K.E + P.E 𝐸𝑛=βˆ’ π‘š0π‘ž4 2 4πœ‹πœ–0𝒏ℏ 2 =βˆ’ 𝒏2 𝑒𝑉

5 Wave-Particle Duality
Light: wave nature (diffraction, refraction, interference….) particle nature (photoelectric effect, Compton effect) called β€œphoton” Electron: particle nature (m0, q ….) wave nature (SEM, TEM, diffraction, refraction, interference…) De Broglie’s matter wave: All particles have the properties of wave. Ξ»= β„Ž π‘šΚ‹ p= β„Ž Ξ» de Broglie’s hypothesis Low dimensional materials (2D, 1D) in terms of electrical properties: size of reduced dimensions approaches Ξ» of electron

6 BASIC FORMALISM General Formulation
Quantum mechanics In 1926, SchrΓΆdinger: wave mechanics Heisenberg: matrix mechanics Five basic postulates of wave mechanics: There exist a wavefunction, Ξ¨(x, y, z, t), describing the dynamic behavior of the system. mathematically complex quantity (2) The Ξ¨ for a given system and specified system constraint is determined by solving the time dependent SchrΓΆdinger wave equation, βˆ’ ℏ 2 2π‘š 𝛻2Ξ¨ + U(x, y, z) = ℏ 𝑖 πœ•Ξ¨ πœ•π‘‘ (3) Ξ¨ and 𝛻Ψ must be continuous, finite, and single-valued for all values of x, y, z, and t. not single-valued not continuous not finite

7 (4) Ξ¨βˆ—Ξ¨dV = Ξ¨ 2 dV : the probability that the particle will be
found in the spatial volume element dV. Ξ¨βˆ—Ξ¨dV = 1: normalization (5) There is a unique mathematical operator with each dynamic variable such as position or momentum. The expectation value can be obtained by operating on the wavefunction. <𝛼> = 𝑉 Ξ¨βˆ—π›Όπ‘œπ‘Ξ¨dV < 𝑝 π‘₯ > = 𝑉 Ξ¨βˆ—( ℏ 𝑖 πœ• πœ•π‘₯ Ξ¨)dV =β„π‘˜ 𝑉 Ξ¨βˆ—Ξ¨dV =β„π‘˜ <π‘₯> = 𝑉 Ξ¨βˆ—π‘₯ Ξ¨dV If Ξ¨ = ej(kx - πœ”π‘‘) <𝐸> = 𝑉 Ξ¨βˆ—(βˆ’ ℏ 𝑖 πœ• πœ•π‘‘ Ξ¨)dV =β„πœ” 𝑉 Ξ¨βˆ—Ξ¨dV =β„πœ”

8 Where does operator come from?
For plane wave solution( or harmonic solutions of the wave): Ξ¨ = Aei(kx – πœ”t) operator πœ•Ξ¨ πœ•π‘₯ =π‘–π‘˜Ξ¨ ℏ 𝑖 πœ•Ξ¨ πœ•π‘₯ =β„π‘˜Ξ¨ expectation value πœ•2Ξ¨ πœ•π‘₯2 =βˆ’ π‘˜2Ξ¨ βˆ’ ℏ2 2π‘š πœ•2Ξ¨ πœ•π‘₯2 = ℏ2π‘˜2 2π‘š Ξ¨ πœ•Ξ¨ πœ•π‘‘ =βˆ’ π‘–πœ”Ξ¨ βˆ’ ℏ 𝑖 πœ•Ξ¨ πœ•π‘‘ =β„πœ”Ξ¨ Time-independent Formulation E = K.E + P.E βˆ’ 𝑃2 2π‘š +π‘ˆ π‘₯, 𝑦, 𝑧 =𝐸:π‘π‘™π‘Žπ‘ π‘ π‘–π‘π‘Žπ‘™ 𝑒π‘₯π‘π‘Ÿπ‘’π‘ π‘ π‘–π‘œπ‘› In operator form with Ξ¨ βˆ’ ℏ2 2π‘š 𝛻2+π‘ˆ(π‘₯, 𝑦, 𝑧)) Ξ¨=βˆ’ ℏ 𝑖 πœ•Ξ¨ πœ•π‘‘ time-dependent SchrΓΆdinger equation 𝐻 Ξ¨=βˆ’ ℏ 𝑖 πœ•Ξ¨ πœ•π‘‘ =𝐸Ψ Hamiltonian operator

9 (3’) ψand π›»Οˆmust be continuous, finite, and single-valued
βˆ’ ℏ 𝑖 πœ•Ξ¨ πœ•π‘‘ =𝐸Ψ 𝑉 Ξ¨βˆ—(βˆ’ ℏ 𝑖 πœ• πœ•π‘‘ Ξ¨)dV =𝐸 𝑉 Ξ¨βˆ—Ξ¨dV =𝐸:π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ The equation has the solution of the form Ξ¨ π‘₯, 𝑦, 𝑧, 𝑑 = ψ π‘₯, 𝑦, 𝑧 𝑒 βˆ’π‘–πΈπ‘‘/ℏ Substituting this into time dependent equation and by using separation of variables. 𝛻2ψ+βˆ’ 2π‘š ℏ2 [ 𝐸 βˆ’π‘ˆ π‘₯, 𝑦, 𝑧 ]ψ=0 time-independent SchrΓΆdinger equation (3’) ψand π›»Οˆmust be continuous, finite, and single-valued for all values of x, y, and z. (4’) Ξ¨βˆ—Ξ¨=Οˆβˆ—ΟˆdV = ψ 2 dV : the probability that the particle will be found in the spatial volume element dV. Likewise 𝑉 Οˆβˆ—ΟˆdV = 1 (5’) The expectation value of the system variable 𝛼 is given by <𝛼> = 𝑉 Οˆβˆ—π›Όπ‘œπ‘ΟˆdV

10 SIMPLE PROBLEM SOLUTIONS
The Free Particle (electrons in free space) U(x, y, z) = 0, more generally U(x, y, z) = constant with total energy E and mass m no force acting on the particle In 1-D, time-independent S.E 𝑑 2 ψ 𝑑 π‘₯ π‘šπΈ ℏ2 ψ=0 By introducing the constant, k ≑ 2π‘šπΈ/ ℏ 2 or equivalently E= ℏ 2 π‘˜ 2 2π‘š = < 𝑝 π‘₯ >2 2π‘š Solution becomes ψ π‘₯ = 𝐴 + 𝑒 π‘–π‘˜π‘₯ + 𝐴 βˆ’ 𝑒 βˆ’π‘–π‘˜π‘₯ Recalling the relationship, Ξ¨ π‘₯, 𝑦, 𝑧, 𝑑 = ψ π‘₯, 𝑦, 𝑧 𝑒 βˆ’π‘–πΈπ‘‘/ℏ Ξ¨ π‘₯, 𝑑 = 𝐴 + 𝑒 𝑖(π‘˜π‘₯ βˆ’ 𝐸𝑑 ℏ ) + 𝐴 βˆ’ 𝑒 βˆ’π‘–(π‘˜π‘₯+ 𝐸𝑑 ℏ ) Traveling wave moving (-) x-direction Traveling wave moving (+) x-direction

11 Traveling wave (plane wave)
Electron in free space Traveling wave (plane wave) particle Ξ» π‘˜= 2πœ‹ Ξ» : Expectation value of momentum for free particle wave number <𝑝π‘₯> = βˆ’βˆž ∞ Οˆβˆ— ℏ 𝑖 𝑑 𝑑π‘₯ ψ dx =β„π‘˜ βˆ’βˆž ∞ Οˆβˆ—Οˆdx =β„π‘˜ = β„Ž Ξ» The phase of the wave, kx – Et/ℏ = constant 𝑑 𝑑𝑑 π‘˜π‘₯ βˆ’ 𝐸𝑑 ℏ =0 de Broglie’s hypothesis π‘˜ 𝑑π‘₯ 𝑑𝑑 =π‘˜Κ‹= 2πœ‹ Ξ» 𝜈λ=2πœ‹πœˆ=πœ”= 𝐸 ℏ Expectation value of the momentum for a free particle is exact , because βˆ†x = ∞ and hence βˆ† p = 0. From classical mechanics From wave mechanics E= 𝑝 2 2π‘š = π‘šπ‘£2 2 E= ℏ 2 π‘˜ 2 2π‘š = < 𝑝 π‘₯ >2 2π‘š continuous energy spectrum Identical because βˆ† p = 0 for free particle.

12 k = π‘›πœ‹ π‘Ž , Particle in a 1-D Box ∴ Οˆπ‘› π‘₯ = 𝐴 𝑛 𝑠𝑖𝑛 π‘›πœ‹π‘₯ π‘Ž
i) Outside the box, U = ∞, ψ π‘₯ =0 ii) Inside the box, U = 0. 𝑑 2 ψ 𝑑 π‘₯ 2 +βˆ’ 2π‘š ℏ2 (πΈβˆ’π‘ˆ)ψ=0 𝑑 2 ψ 𝑑 π‘₯ 2 + π‘˜ 2 ψ=0 0 < x < a where k ≑ 2π‘šπΈ/ ℏ 2 or E= ℏ 2 π‘˜ 2 2π‘š Solution becomes ψ 0 =0 or ψ π‘₯ =𝐴 𝑒 π‘–π‘˜π‘₯ + 𝐡 𝑒 βˆ’π‘–π‘˜π‘₯ Boundary conditions ψ π‘₯ =π΄π‘ π‘–π‘›π‘˜π‘₯ + π΅π‘π‘œπ‘ π‘˜π‘₯ ψ π‘Ž =0 k = π‘›πœ‹ π‘Ž , ψ 0 =𝐡=0, ψ π‘Ž =π΄π‘ π‘–π‘›π‘˜π‘Ž=0 ∴ n = Β±1,Β±2, Β±3,……. Two waves with +, - direction form standing wave. Οˆπ‘› π‘₯ = 𝐴 𝑛 𝑠𝑖𝑛 π‘›πœ‹π‘₯ π‘Ž Particle was restricted to a finite range of coordinate value.

13 E= ℏ 2 π‘˜ 2 2π‘š En= 𝑛 2 ℏ 2 πœ‹ 2 2π‘š π‘Ž 2 discrete energy spectrum
standing wave Particle’s momentum is zero for all energy states, since the particle periodically changes direction. < 𝑝 π‘₯ > = βˆ’βˆž ∞ Οˆβˆ— ℏ 𝑖 𝑑 𝑑π‘₯ ψ dx =0

14 Οˆβˆ— ψ= ψ 2 is called spatial density (probability density when it is normalized). ψ 2 Οˆβˆ— Οˆπ‘‘π‘₯= ψ 2 𝑑π‘₯: probability of finding the particle between x and x + dx x0 x βˆ’π‘žΟˆβˆ— ψ=βˆ’π‘ž ψ 2 : spatial distribution of charge corresponding to a single electron The electron is no longer considered to be identifiable as a point with particular position, the whole density distribution is the β€œparticle”. From normalization, βˆ’βˆž ∞ Οˆβˆ—Οˆdx = 0 π‘Ž Οˆβˆ—Οˆdx = 0 π‘Ž 𝐴 𝑛 2 𝑠𝑖𝑛2 π‘›πœ‹π‘₯ π‘Ž dx = 1 ∴ 𝐴 𝑛 = ( 2 π‘Ž )1/2 βˆ’βˆž ∞ βˆ’π‘žΟˆβˆ—Οˆdx =βˆ’π‘ž 0 π‘Ž Οˆβˆ—Οˆdx =βˆ’π‘ž

15 Finite Potential Well U(x) U0 U(x) = 0, 0 <x < a
𝑑 2 ψ 𝑑 π‘₯ 2 +βˆ’ 2π‘š ℏ2 (πΈβˆ’π‘ˆ)ψ=0, U(x) = U0, otherwise x a For 0 < x < a, U = 0, 𝑑 2 ψ0 𝑑 π‘₯ 2 + π‘˜ 2 ψ0=0 where k ≑ 2π‘šπΈ/ ℏ 2 𝑑 2 ψ Β± 𝑑 π‘₯ 2 + 𝛼 2 ψ Β± =0 For x > a, x < 0, U = U0, where α≑ 2π‘š(π‘ˆ0 βˆ’πΈ)/ ℏ (0 < E < U0) The general solutions, Οˆβˆ’ βˆ’βˆž =0 𝐡-, A+ = 0 ψ+ ∞ =0 Οˆβˆ’ π‘₯ =π΄βˆ’ 𝑒 𝛼π‘₯ + 𝐡 βˆ’π‘’ βˆ’π›Όπ‘₯ …x < 0 Οˆβˆ’ 0 =ψ0 0 ψ0 π‘₯ =𝐴0π‘ π‘–π‘›π‘˜π‘₯ + 𝐡0π‘π‘œπ‘ π‘˜π‘₯ …0 <x < a continuity of ψ B.C’s ψ0 π‘Ž =ψ+ π‘Ž ψ+ π‘₯ =𝐴+ 𝑒 𝛼π‘₯ + 𝐡 +𝑒 βˆ’π›Όπ‘₯ …x > a π‘‘Οˆβˆ’(0) 𝑑π‘₯ = π‘‘Οˆ0(0) 𝑑π‘₯ continuity of π‘‘Οˆ 𝑑π‘₯ π‘‘Οˆ0(π‘Ž) 𝑑π‘₯ = π‘‘Οˆ+(π‘Ž) 𝑑π‘₯ Four equations four unknowns

16 𝐴0π‘ π‘–π‘›π‘˜π‘Ž + 𝐡0π‘π‘œπ‘ π‘˜π‘Ž=𝐡 +𝑒 βˆ’π›Όπ‘Ž 𝐴0 π‘˜ 2 βˆ’ 𝛼 2 π‘ π‘–π‘›π‘˜π‘Ž βˆ’2π›Όπ‘˜π‘π‘œπ‘ π‘˜π‘Ž =0 π›Όπ΄βˆ’= π‘˜π΄0
π΄βˆ’ = 𝐡0 𝐴0π‘ π‘–π‘›π‘˜π‘Ž + 𝐡0π‘π‘œπ‘ π‘˜π‘Ž=𝐡 +𝑒 βˆ’π›Όπ‘Ž 𝐴0 π‘˜ 2 βˆ’ 𝛼 2 π‘ π‘–π‘›π‘˜π‘Ž βˆ’2π›Όπ‘˜π‘π‘œπ‘ π‘˜π‘Ž =0 π›Όπ΄βˆ’= π‘˜π΄0 𝐴0 = 0; trivial solution π‘˜π΄0π‘π‘œπ‘ π‘˜π‘Ž βˆ’ π‘˜π΅0π‘ π‘–π‘›π‘˜π‘Ž=βˆ’ 𝛼𝐡 +𝑒 βˆ’π›Όπ‘Ž Non-trivial solution, π‘˜ 2 βˆ’ 𝛼 2 π‘ π‘–π‘›π‘˜π‘Ž βˆ’2π›Όπ‘˜π‘π‘œπ‘ π‘˜π‘Ž=0 or π‘‘π‘Žπ‘›π‘˜π‘Ž = 2π›Όπ‘˜ π‘˜ 2 βˆ’ 𝛼 2 Introducing, Ξ±0≑ 2π‘šπ‘ˆ0 /ℏ2 (Ξ±0 =constant) and ξ≑ 𝐸/π‘ˆ ( 0 <ΞΎ < 1) Then, Ξ±=Ξ±0 1 βˆ’ΞΎ and π‘˜=Ξ±0 ΞΎ and therefore π‘‘π‘Žπ‘›β‘(Ξ±0π‘Ž ΞΎ )= 2 ΞΎ(1 βˆ’ΞΎ) 2ΞΎ βˆ’1 = 𝑓(ΞΎ) Ξ±0π‘Ž= πœ‹ 4 assuming ΞΎ = 0.87 𝐸=0.87π‘ˆ0

17 there is one and only one allowed energy level.
Ξ±0π‘Ž< πœ‹ π‘œπ‘Ÿ π‘ˆ0< ℏ 2 πœ‹ 2 2π‘š π‘Ž 2 , For very shallow wells, there is one and only one allowed energy level. When πœ‹< Ξ±0π‘Ž<2πœ‹, there is two allowed energy levels. When 2πœ‹< Ξ±0π‘Ž<3πœ‹, there is three allowed energy levels. Visualization of quantum mechanical reflection finite well e-1 a infinite well penetration depth Visualization of tunneling through a thin barrier


Download ppt "Elements of Quantum Mechanics"

Similar presentations


Ads by Google