Download presentation
Presentation is loading. Please wait.
1
التحليل الإحصائي Statistical analysis
إبراهيم الغامدي متخصص في علم الوبائيات والإحصاء الطبي جامعة لينكولن البريطانية مبتعث من جامعة الباحة ملاحظة تم تعريب المادة لمساعدة المبتعثين والمبتعثات على فهمها وبالله التوفيق
2
Types of statistics 1- Descriptive statistics / consist of methods for organizing, displaying, and describing data by using tables, graphs and summary measures. 2- Inferential Statistics / consist of methods that use sample result to help make decisions or predictions about a population.
3
أنواع الإحصاء 1- الإحصاء الوصفي / يتكون من عدة طرق ( تنظيم ، عرض ، وصف ) البيانات باستخدام الجداول والرسومات البيانية والقياسات الإحصائية 2- الإحصاء الإستدلالي / يتكون من عدة طرق نستخدمها مع نتائج العينة لتساعدنا في صنع القرار أو التنبأ الخاص بالمجتمع السكاني
4
Types of data Numerical data Categorical data
Continuous - age, weight, income Discrete - number of children Categorical data Binary data (two categories) - Male / female Nominal data (more than two categories) - Married / single / divorced / widowed Ordinal data (nominal with degree of characteristic) - low / medium / high
5
انواع البيانات أو المتغيرات
1- المتغيرات الكمية ( العددية ) ، هي التي يمكن قياسها عدديا المتغيرات المستمرة ، هي القيمة العددية المتضمنة فترات مختلفة بمعنى احتوائها على اعداد عشرية مثال ، قياس درجة الحرارة - قياس مستوى انزيمات الدم قياس الكولسترول في الدم وغيره
6
انواع البيانات أو المتغيرات
1- المتغيرات الكمية ( العددية ) المتغيرات المنفصلة ، هي القيمة العددية الغير متضمنة على فترات بمعنى أعداد صحيحة لا تحتوي على كسور عشرية مثال ، عدد الطلاب بالجامعة - عدد السيارات - عدد المستشفيات -عدد الأطباء وغيرها
7
انواع البيانات أو المتغيرات
ثانيا / المتغيرات النوعية ( الكيفية ) ، هي التي لا يمكن قياسها عدديا ويمكن تقسيمها إلى فئات المتغيرات الاسمية ، هي التي تحتوي على فئات اسمية مثال ، فئات فصائل الدم - الحالة الإجتماعية وغيرها المتغيرات الاسمية المرتبة ، هي التي تحتوي على فئات اسمية مرتبة مثال ، درجة شدة المرض ( حميد ، متوسط ، خبيث ) - الدخل ( منخفض ، متوسط ، عالي ) وغيرها
8
انواع البيانات أو المتغيرات
ثانيا / المتغيرات النوعية ( الكيفية ) المتغيرات الاسمية الثنائية ، هي التي تحتمل اجابتها على فئتين مثال ، الجنس ( ذكر ، أنثى ) حالة التدخين ( مدخن ، غير مدخن ) وغيرها
9
عرض البيانات الكمية 1- المدرج التكراري ، هو عبارة عن اعمدة متلاصقة ببعضها ذات ارتفاعات مختلفة أو متساوية تمثل القيمة العددية أو التكرار لكل فئة على الخط الأفقي
10
عرض البيانات الكمية مخطط الصندوق BBC- Math
11
Quantifying variability Interquartile range
12
عرض البيانات النوعية 1- الأعمدة البيانية ، هي عبارة عن اعمدة غير متلاصقة ببعضها ذات ارتفاعات مختلفة أو متساوية تمثل القيمة العددية أو التكرار لكل فئة على الخط الأفقي
13
Exploratory analysis Categorical data can be visualised in graphs and tables Categorical data e.g. male female Table with number in each category (frequency or percentage of the total number of patients) Bar diagram n percentage Male 92 61.33 Female 58 38.67 Total 150 100.00
14
عرض البيانات النوعية 2- الدائرة النسبية ، هي عبارة عن دائرة مقسمة إلى أجزاء توضح التوزيع النسبي للعناصر الفئوية المختلفة
15
Exploratory analysis Describing Continuous data
Mean – the sum of all the observations divided by the number of observations Median – the value located half way when the data are ranked in order e.g.: 3, 6, 8, 15, 17; median=8 Mode – the most common value observed
16
مقاييس النزعة المركزية
1- الوسط الحسابي الوسط الحسابي = مجموع القيم العددية ÷ عدد القيم مثال / اوجد الوسط الحسابي للقيم التالية 158 ، 189 ، 265 ، 127، 191 930= 186 = 5 ÷ 930
17
دخل الأسرة الشهري بالريال
الوسط الحسابي Mean كيف يتأثر الوسط الحسابي بالقيم المتطرفة ؟ مثال / لو جمعنا معلومات عن الدخل الشهري الخاص بأربع أسر من ذوي الدخل المتوسط الوسط الحسابي = = 26000 6500 = 4 ÷ 26000 دخل الأسرة الشهري بالريال الأسرة 7000 A 6000 B 8000 C 5000 D
18
الوسط الحسابي لو نظرنا في الجدول التالي لكي ندرك كيف يتأثر الوسط الحسابي بالقيم المتطرفة والشاذة الوسط الحسابي = = ريال 9600 = 5 ÷ 48000 دخل الأسرة الشهري بالريال الأسرة 7000 A 6000 B 8000 C 5000 D 22000 E
19
الوسط الحسابي ما هي المميزات والعيوب التي يتصف بها الوسط الحسابي ؟؟
ما هي المميزات والعيوب التي يتصف بها الوسط الحسابي ؟؟ المزايا والعيوب التي يحظى بها الوسط الحسابي الأكثر شيوعا في مقاييس النزعة المركزية سهولة استخدامه حسابيا يتأثر إذا تم حذف إحدى القيم العددية يتأثر بالقيم الشاذة والمتطرفة لا يتطلب في عملية حسابه ترتيب القيم تصاعديا أو تنازليا يتطلب في عملية حسابه وجود جميع القيم إذا تم جمع الإنحراف المعياري للقيم عن الوسط الحسابي يكون الناتج صفر
20
Median الوسيط الوسيط ، هو القيمة التي تقع في منتصف البيانات بعد ترتيبها تصاعديا أو تنازليا إذا كان عدد القيم فردي فالوسيط بعد الترتيب قيمة واحدة تقسم البيانات العددية إلى قسمين مثماثلين تحديد موقع الوسيط = عدد القيم + 1 ÷ 2 مثال / أوجد الوسيط للبيانات التالية ، 1 ، 6 ، 5 ، 2 ، 4 نرتب البيانات تصاعديا أو نتازليا ، 1 ، 2 ، 4 ، 5 ، 6 نحدد موقع الوسيط = عدد القيم ÷ 2 = 3 ، إذا الوسيط يقع في القيمة الثالثة من البيانات الوسيط = 4
21
الوسيط إذا كان عدد القيم زوجي فالوسيط بعد الترتيب هو عبارة عن متوسط قيمتين تقسم البيانات العددية إلى قسمين مثماثلين تحديد موقع الوسيط = عدد القيم + 1 ÷ 2 مثال / أوجد الوسيط للبيانات التالية ، 7 ، 1 ، 6 ، 5 ، 2 ، 4 نرتب البيانات تصاعديا أو نتازليا ، 1 ، 2 ، 4 ، 5 ، 6 ، 7 نحدد موقع الوسيط = عدد القيم ÷ 2 = 3.5 ، إذا الوسيط يقع في القيمة الثالثة والنصف من البيانات بين رقم 4 و 5 الوسيط = ÷ 2 = 4.5
22
الوسيط ما هي المميزات والعيوب التي يتصف بها الوسيط ؟؟
المزايا والعيوب التي يحظى بها الوسيط متوسط الإستخدام في مقاييس النزعة المركزية سهولة استخدامه حسابيا لا يتأثر إذا تم حذف إحدى القيم العددية لا يتأثر بالقيم الشاذة والمتطرفة يتطلب في عملية حسابه ترتيب القيم تصاعديا أو تنازليا لا يتطلب في عملية حسابه وجود جميع القيم إذا تم جمع الإنحراف المعياري للقيم عن وسيطها فليس من الضروري أن يكون الناتج صفر
23
Mode المنوال المنوال ، هو القيمة التي تعتبر أكثر تكرار في البيانات العددية لا يوجد عملية حسابية للحصول على المنوال لكن من السهل إيجاده عند ملاحظة توزيع البيانات وتدقيقها ، اذا كانت البيانات جميعها مختلفه فنستنتج بأنه لا يوجد لدينا منوال في تلك الحالة وعلى نظيره العكس فقد يكون هناك اكثر من منوال في البيانات. يعتبر المنوال الوحيد الأفضل في قياس النزعة المركزية للبيانات الأسمية الغير عددية مثال / اوجد المنوال للبيانات التالية ، 77 ، 69 ، 74 ، 81 ، 71 ، 68 ، 74 ، 73 المنوال = 74
24
المنوال ما هي المميزات والعيوب التي يتصف بها المنوال ؟؟
المزايا والعيوب التي يحظى بها الوسيط قليل الإستخدام في مقاييس النزعة المركزية سهولة استخدامه حسابيا لا يتأثر إذا تم حذف إحدى القيم العددية لا يتأثر بالقيم الشاذة والمتطرفة لا يتطلب في عملية حسابه ترتيب القيم تصاعديا أو تنازليا لا يتطلب في عملية حسابه وجود جميع القيم
25
مقايسس التشتت للبيانات
تعتبر مقاييس التشتت للبيانات ذات أهمية بالغة في وصف البيانات حيث أن مقاييس النزعة المركزية المتضمنة الوسط الحسابي ، والوسيط ، والمنوال لا تعطينا الصورة الكاملة والحقيقية في توزيع البيانات ، فقد يكون لدينا مجموعتين من البيانات لديها نفس قيمة الوسط الحسابي ولكنها مختلفة تماما من حيث التشتت والإنتشار أو مدى التقارب والتباعد للبيانات من مقاييس النزعة المركزية الخاصة بها
26
مقايسس التشتت للبيانات
هناك مجموعتان من الطلاب ، وكانت درجات المجوعة الأولى والثانية على النحو التالي إذا تم ايجاد الوسط الحسابي للمجوعة الأولى = 728 ÷ 10 = 72 درجة إذا تم ايجاد الوسط الحسابي للمجوعة الثانية = 728 ÷ 10 = 72 درجة الوسط الحسابي في المجموعتين متساويين ولكن المدى وتشتت البيانات مختلف تماما حيث تعتبر بيانات المجموعة الثانية أكثر تجانسا وتقارب بينما بيانات المجوعة الأولى متباعدة ومتشتتة 100 90 88 85 80 75 70 55 45 40 المجموعة الأولى 78 77 76 75 74 73 72 70 68 65 المجموعة الثانية
27
مقايسس التشتت( المدى) يعتبر من أسهل مقاييس التشتت للبيانات ويمكن تعريفه على أنه الفرق بين أعلى وأصغر قيمة في البيانات ، فإذا كان المدى الخاص بالبيانات صغير يدل على تجانسها وتقاربها من بعضها لبعض وإذا كان عكس ذلك فهو يدل على تشتتها وتباعدها عن بعضها لبعض المدى = أعلى قيمة ـــ أدنى قيمة المدى للمجموعة الأولى = 100 ـــ 40 = 60 المدى للمجموعة الثانية = 78 ـــ 65 = 13 نلاحظ في هذا المثال بأن المدى في المجموعة الثانية أكثر تجانسا وتقاربا حيث يساوي 13 بينما في المجموعة الأولى أكثر تشتتا وتباعدا حيث يساوي 60 وهو قرابة خمسة أضعاف مدى المجموعة الثانية
28
مقايسس التشتت( المدى) ما هي المميزات والعيوب التي يتصف بها المدى ؟؟
المزايا والعيوب التي يحظى بها المدى قليل الإستخدام في مقاييس التشتت سهولة استخدامه حسابيا يعتمد على قيمتين فقط في عملية حسابه يتأثر بالقيم الشاذة والمتطرفة لا يعطى اهتمام بالغ في قياس التشتت للبيانات
29
مقايسس التشتت( التباين والإنحراف المعياري)
يعتبر الإنحراف المعياري أكثر استخداما لقياس تشتت البيانات ، قيمة الإنحراف المعياري تخبرنا عن مدى تشتت وانتشار البيانات حول الوسط الحسابي ، فكلما كانت قيمة الإنحراف المعياري متدنية دلت على أن قيم البيانات متقاربة في مداها حول الوسط الحسابي بينما لو كانت قيمة الإنحراف المعياري عالية دلت على أن قيم البيانات متباعدة في مداها حول الوسط الحسابي . الإنحراف المعياري يمكن الحصول عليه بعد ايجاد قيمة التباين فهو يساوي الجذر التربيعي لقيمة التباين
30
مقايسس التشتت( التباين والإنحراف المعياري)
اذا كانت البيانات ذات توزيع طبيعي على الشكل الهرمي فالبتالي يكون هناك ثلاثة انحرافات معيارية عن الوسط الحسابي الإنحراف المعياري الأول يتضمن 68% من البيانات الإنحراف المعياري الثاني يتضمن 95% من البيانات الإنحراف المعياري الثالث يتضمن 99% من البيانات
31
مقايسس التشتت( التباين والإنحراف المعياري)
إذا كان لدينا متوسط درجات الطلاب في مادة الإحصاء 25 وقيمة الإنحراف المعياري عن المتوسط الحسابي 5 المطلوب هنا توضيح نسبة الطلاب من خلال درجات الإنحراف المعياري ؟؟ الإنحراف المعياري الأول يتضمن 68% من الطلاب تقع درجاتهم في مادة الإحصاء ( ) درجة الإنحراف المعياري الثاني يتضمن 95% من الطلاب تقع درجاتهم في مادة الإحصاء ( ) درجة الإنحراف المعياري الثالث يتضمن 99% من الطلاب تقع درجاتهم في مادة الإحصاء ( ) درجة
32
مقايسس التشتت( التباين والإنحراف المعياري)
ما هي المميزات والعيوب التي يتصف بها المدى ؟؟ المزايا والعيوب التي يحظى بها الإنحراف المعياري كثير الإستخدام في مقاييس التشتت وافضلها سهولة استخدامه حسابيا يتأثر بالقيم الشاذة والمتطرفة يتطلب في عملية حسابه وجود جميع القيم
33
Hypothesis testing Methodology of setting up and testing a hypothesis
34
Hypothesis testing Effect – the numerical value corresponding to the comparison of interest Null hypothesis – hypothesis that the effect of interest is zero Alternative hypothesis – that the effect of interest is not zero Having set up the null hypothesis we then evaluate the probability that we could have obtained the observed data (or data more extreme) if the null hypothesis were true. This probability is usually called p value; the smaller it is the more untenable the null hypothesis. Arbitrarily chosen cut off point for p is When p is below the cut-off the result is called statistically significant.
35
فرضيات البحث العلمي 1- الفرضية الصفرية أو العدم / لا يوجد فرق بين متوسط مجموعتين أو أكثر مثال / لا يوجد فرق بين تأثير العلاج التقليدي والحديث 2- الفرضية البديلة / يوجد فرق بين متوسط مجموعتين أو أكثر
36
خطأ النوع الأول Type I error
Reject Null hypothesis when it is true رفض الفرضية الصفرية وهي صحيحة الحقيقة لا يوجد فرق بين المجموعتين لكن بالخطأ تم إثبات العكس P-value = 0.05 , 5%
37
خطأ النوع الثاني Type II error
Accept Null hypothesis when it is false قبول الفرضية الصفرية وهي خاطئة الحقيقة يوجد فرق بين المجموعتين لكن بالخطأ تم إثبات العكس
38
Types of tests إختبار T-Test
39
إختبار العينة الواحدة One Sample T-Test
يستخدم اختبار العينة الواحدة عندما يوجد لدينا بيانات عددية من عينة واحدة ونرغب في مقارنة متوسط العينة الذي حصلنا عليه مع متوسط السكان القيمة المعلومة والمعروفة سابقا الفرضية الصفرية / تقول بأنه لا يوجد فرق بين متوسط العينة ومتوسط السكان الذي تم تعريفه بالقيمة المعلومة الفرضية البديلة / تقول بأنه يوجد فرق بين متوسط العينة ومتوسط السكان الذي تم تعريفه بالقيمة المعلومة شروط الإختبار
40
إختبار العينة الواحدة One Sample T-Test
شروط الإختبار/ أن يكون المتغير التابع ( وزن الذكور في العينة ) محققا للتوزيع الطبيعي وليس ملتوي نحو اليمين أو اليسار لا يوجد قيم شاذة في البيانات Non-parametric = Sign test
41
إختبار عينتان مستقلتان Two Sample T-Test
مقارنة متوسط متغير مكون من مجموعتين مستقلتين المطلوب في اختبار العينتين المستقلتين متغير مستقل اسمي ثنائي النوع مثل نوع الجنس ( ذكر ، أنثى ) التدخين ( نعم ، لا ) وهكذا متغير تابع كمي النوع مثل الطول ، ضغط الدم ، درجات الطلاب في الإحصاء الحيوي
42
إختبار عينتان مستقلتان Two Sample T-Test
شروط الإختبار اولا : يجب أن تكون المجموعتين مستقلتين ثانيا : يجب أن يكون القياس مستقل لكل مجموعة ثالثا : يجب أن يكون المتغير التابع (الناتج) كمي عددي رابعا : يجب أن يكون المتغير التابع (الناتج) الكمي العددي ذو توزيع طبيعي غير شاذ خامسا : تجانس التباين بين المجموعتين المستقلتين
43
إختبار عينتان مستقلتان Two Sample T-Test
كيف نحقق تجانس التباين ؟؟ بالنسبة لإختبار تجانس التباين يتم تحديده عن طريق إختبار ليفين الذي من خلاله يتضح لنا في حالة الدلالة الإحصائية عندما يكون مستوى المعنوية أكبر من 0.05 والتي تعني بأن التباين متساوي في المجموعتين Non-parametric = Mann-Whitney Test
44
إختبار العينة المزدوجة Paired Sample T-Test
يستخدم اختبار العينة المزدوجة عندما نرغب في مقارنة متوسطين لمجموعة واحدة قبلي وبعدي ،، يتم إختبار الدلالة الإحصائية لفرق المتوسط في تلك المجموعة شروط الإختبار أولا : يجب أن يكون المتغير التابع (الناتج) كمي عددي ثانيا : يجب أن يكون الفرق بين القراءة الأولى والثانية لجميع المشاركين ذو توزيع طبيعي غير شاذ Non-parametric test = Wilcoxon’s Matched Pairs Test
45
المتغير المستقل الاسمي المستوى الإقتصادي ،، منخفض ، متوسط ، عالي
إختبار التباين الأحادي في اتجاه واحد One way analysis of variance (ANOVA) يستخدم اختبار التباين الأحادي في اتجاه واحد عندما يوجد لدينا متغير مستقل مكون من أكثر من مجموعتين ونرغب في مقارنة المتوسطات الخاصة بالمجموعات ،، يمكن استخدامه عندما نريد دراسة تأثير متغير نوعي مستقل يتفرع منه أكثر من مجموعتين على المتغير الكمي التابع المتغير التابع الكمي المتغير المستقل الاسمي متغير واحد كمي أكثر من مجموعتين الوزن المستوى الإقتصادي ،، منخفض ، متوسط ، عالي
46
إختبار التباين الأحادي في اتجاه واحد One way analysis of variance (ANOVA)
شروط الإختبار اولا : يجب أن تكون المجموعات مستقلة ثانيا : يجب أن يكون القياس مستقل لكل مجموعة ثالثا : يجب أن يكون المتغير التابع (الناتج) كمي عددي رابعا : يجب أن يكون المتغير التابع (الناتج) الكمي العددي ذو توزيع طبيعي غير شاذ خامسا : تجانس التباين بين المجموعتين المستقلتين
47
إختبار التباين الأحادي في اتجاهين Two way analysis of variance (ANOVA)
اختبار التباين الأحادي في اتجاهين هو امتداد للتباين الأحادي في اتجاه واحد ويمكن استخدامه عندما يوجد لدينا متغيرين مستقلين مكون من مجموعتين أو اكثر ونرغب في مقارنة المتوسطات الخاصة بتلك المجموعات في وقت واحد. يمكن استخدامه عندما نريد دراسة تأثير متغيرين مستقلين على متغير كمي واحد المتغير التابع الكمي المتغير المستقل الاسمي متغير واحد كمي مجموعتين أو كثر في كل متغير الوزن المستوى الإقتصادي ،، منخفض ، متوسط ، عالي الحالة الإجتماعية ،، اعزب ، متزوج ، ارمل ، مطلق
48
الإختبارات المعلمية واللامعلمية Parametric test and non-parametric test
اللا معلمية الإختبارات المعلمية تحديد المقارنه طبيعي أو غير طبيعي طبيعي جرسي الشكل شكل التوزيع الوسيط الوسط الحسابي مقياس النزعة المركزية اسمي أو ترتيبي كمي نوع البيانات Sign test One sample t-test إختبار عينة واحدة كمية Willcoxon-rank sum = Mann-Whitney Two sample t-test إختبار مجموعتان مستقلتان Wilcoxon matched pairs test Paired sample t-test إختبار عينة مزدوجة قبل وبعد Kruskal-wallis test one way Anova إختبار مستقل لأكثر من مجموعتين أحادي الإتجاه Friedman test Two way Anova إختبار مستقل لأكثر من مجموعتين ثنائي الإتجاه Spearman Pearson إختبار الإرتباط
49
هدفي في النهاية أن تقول اللهم صل وسلم على سيدنا وحبيبنا محمد عدد خلقك ورضى نفسك وزنة عرشك ومداد كلماتك إلى يوم الدين ================================
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.