Presentation is loading. Please wait.

Presentation is loading. Please wait.

Joule Heating of MEMS Beam Ansys Simulation October 2011

Similar presentations


Presentation on theme: "Joule Heating of MEMS Beam Ansys Simulation October 2011"— Presentation transcript:

1 Joule Heating of MEMS Beam Ansys Simulation October 2011

2 Problem Find power required to heat silicon beam by ~100°C with the geometry below Ambient temperature = 7 Kelvin Heat convection and conduction are modeled in the simulation 10 μm w 7 Kelvin 7 Kelvin 10 μm α° L μm Top View t = 5 μm 3D view Front View

3 Si Material Properties
[Karlmann, 2006]  Thermal Expansion coef. Resistivity α < 0 ! Thermal Conductivity [Asheghi 2002] [Li 1978]

4 Si Material Parameters (From previous slide)
Resistivity [Ohm-m] = ~10^-3 For boron-doped Si (NA = 3*10^17 cm^-3) Young’s Mod: 169 GPa Temp [K] Thermal Expans. High purity p-type [1/K] [Karlmann,2006] 35 -0.11e-6 50 -0.29e-6 70 -0.46e-6 110 -0.22e-6 130 0.11e-6 150 0.49e-6 190 1.24e-6 210 1.56e-6 250 2.1e-6 300 2.65e-6 400 3.21e-6 Temp [K] Thermal Cond. 10^17 B/cm^3 [W/(m-K)] [Aseghi, 2002] 20 170 30 300 50 600 80 500 100 400 150 200 146 74 *Interesting note: Thermal expansion of silicon is NEGATIVE below 120 K

5 Simulation Results – Temp. & Displ.
Max Temp: 367 K Power: 19 mW (3000 x 5 x 5 μm3 beam, 2° angle) Max Temp: K Power: 11 mW (3000 x 5 x 5 μm3 beam, 2° angle) Displacement: 19 μm Power: 19 mW (3000 x 5 x 5 μm3 beam, 2° angle) Displacement: 4.4 μm Power: 11 mW (3000 x 5 x 5 μm3 beam, 2° angle)

6 Simulation Results - Temperature
Max temperature (at middle of beam) LxWxT (α deg)

7 Simulation Results - Displacement
Max displacement (at middle of beam) LxWxT (α deg)

8 Simulation Results – Displ. Vs Temp
LxWxT (α deg)


Download ppt "Joule Heating of MEMS Beam Ansys Simulation October 2011"

Similar presentations


Ads by Google