Presentation is loading. Please wait.

Presentation is loading. Please wait.

Interest Grabber Getting Through

Similar presentations


Presentation on theme: "Interest Grabber Getting Through"— Presentation transcript:

1 Interest Grabber Getting Through
Section 10-1 Getting Through Materials move through cells by diffusion. Oxygen and food move into cells, while waste products move out of cells. How does the size of a cell affect how efficiently materials get to all parts of a cell? Work with a partner to complete this activity. 1. On a sheet of paper, make a drawing of a cell that has the following dimensions: 5 cm x 5 cm x 5 cm. Your partner should draw another cell about one half the size of your cell on a separate sheet of paper. 2. Compare your drawings. How much longer do you think it would take to get from the cell membrane to the center of the big cell than from the cell membrane to the center of the smaller cell? 3. What is the advantage of cells being small?

2 Section Outline 10–1 Cell Growth A. Limits to Cell Growth
1. DNA “Overload” 2. Exchanging Materials 3. Ratio of Surface Area to Volume 4. Cell Division

3 Ratio of Surface Area to Volume in Cells
Section 10-1 Cell Size Surface Area (length x width x 6) Volume (length x width x height) Ratio of Surface Area to Volume

4 Interest Grabber Cell Cycle
Section 10-2 Cell Cycle The cell cycle represents recurring events that take place in the period of time from the beginning of one cell division to the beginning of the next. In addition to cell division, the cell cycle includes periods when the cell is growing and actively producing materials it needs for the next division. 1. Why is the cell cycle called a cycle? 2. Why do you think that it is important for a cell to grow in size during its cell cycle? 3. What might happen to a cell if all events leading up to cell division took place as they should, but the cell did not divide?

5 Section Outline 10–2 Cell Division A. Chromosomes B. The Cell Cycle
C. Events of the Cell Cycle D. Mitosis 1. Prophase 2. Metaphase 3. Anaphase 4. Telophase E. Cytokinesis

6 Concept Map Cell Cycle Section 10-2 includes M phase (Mitosis)
Interphase is divided into is divided into G1 phase S phase Prophase G2 phase Metaphase Telophase Anaphase

7 Figure 10–4 The Cell Cycle Section 10-2 G1 phase M phase S phase

8 Figure 10–5 Mitosis and Cytokinesis
Section 10-2 Spindle forming Centrioles Chromatin Centromere Nuclear envelope Centriole Chromosomes (paired chromatids) Interphase Prophase Spindle Cytokinesis Centriole Metaphase Telophase Individual chromosomes Anaphase Nuclear envelope reforming

9 Figure 10–5 Mitosis and Cytokinesis
Section 10-2 Spindle forming Centrioles Chromatin Centromere Nuclear envelope Centriole Chromosomes (paired chromatids) Interphase Prophase Spindle Cytokinesis Centriole Metaphase Telophase Individual chromosomes Anaphase Nuclear envelope reforming

10 Figure 10–5 Mitosis and Cytokinesis
Section 10-2 Spindle forming Centrioles Chromatin Centromere Nuclear envelope Centriole Chromosomes (paired chromatids) Interphase Prophase Spindle Cytokinesis Centriole Metaphase Telophase Individual chromosomes Anaphase Nuclear envelope reforming

11 Figure 10–5 Mitosis and Cytokinesis
Section 10-2 Spindle forming Centrioles Chromatin Centromere Nuclear envelope Centriole Chromosomes (paired chromatids) Interphase Prophase Spindle Cytokinesis Centriole Metaphase Telophase Individual chromosomes Anaphase Nuclear envelope reforming

12 Figure 10–5 Mitosis and Cytokinesis
Section 10-2 Spindle forming Centrioles Chromatin Centromere Nuclear envelope Centriole Chromosomes (paired chromatids) Interphase Prophase Spindle Cytokinesis Centriole Metaphase Telophase Individual chromosomes Anaphase Nuclear envelope reforming

13 Figure 10–5 Mitosis and Cytokinesis
Section 10-2 Spindle forming Centrioles Chromatin Centromere Nuclear envelope Centriole Chromosomes (paired chromatids) Interphase Prophase Spindle Cytokinesis Centriole Metaphase Telophase Individual chromosomes Anaphase Nuclear envelope reforming

14 Interest Grabber Knowing When to Stop
Section 10-3 Knowing When to Stop Suppose you had a paper cut on your finger. Although the cut may have bled and stung a little, after a few days, it will have disappeared, and your finger would be as good as new. 1. How do you think the body repairs an injury, such as a cut on a finger? 2. How long do you think this repair process continues? 3. What do you think causes the cells to stop the repair process?

15 Section Outline 10–3 Regulating the Cell Cycle
A. Controls on Cell Division B. Cell Cycle Regulators 1. Internal Regulators 2. External Regulators C. Uncontrolled Cell Growth

16 Control of Cell Division
Section 10-3

17 Figure 10–8 Effect of Cyclins
Section 10-3 The sample is injected into a second cell in G2 of interphase. A sample of cytoplasm is removed from a cell in mitosis. As a result, the second cell enters mitosis.

18 Click a hyperlink to choose a video. Animal Cell Mitosis
Videos Click a hyperlink to choose a video. Animal Cell Mitosis Animal Cell Cytokinesis Video Contents

19 Click the image to play the video segment.
Animal Cell Mitosis Click the image to play the video segment. Video 1

20 Click the image to play the video segment.
Animal Cell Cytokinesis Click the image to play the video segment. Video 2

21 Go Online Links on cell growth Links from the authors on stem cells
Share cell cycle lab data Interactive test For links on cell division, go to and enter the Web Code as follows: cbn-3102. For links on the cell cycle, go to and enter the Web Code as follows: cbn-3103. Internet

22 Interest Grabber Answers
1. On a sheet of paper, make a drawing of a cell that has the following dimensions: 5 cm x 5 cm x 5 cm. Your partner should draw another cell about one half the size of your cell on a separate sheet of paper. 2. Compare your drawings. How much longer do you think it would take to get from the cell membrane to the center of the big cell than from the cell membrane to the center of the smaller cell? It would take twice the amount of time. 3. What is the advantage of cells being small? If cells are small, materials can be distributed to all parts of the cell quickly. Section 1 Answers

23 Interest Grabber Answers
1. Why is the cell cycle called a cycle? It represents recurring events. 2. Why do you think that it is important for a cell to grow in size during its cell cycle? If a cell did not grow in size, each cell division would produce progressively smaller cells. 3. What might happen to a cell if all events leading up to cell division took place as they should, but the cell did not divide? Students may infer that a cell that undergoes all sequences of the cell cycle would grow increasingly larger—to a point at which the cell could no longer exchange materials with the environment efficiently enough to live. Section 2 Answers

24 Interest Grabber Answers
1. How do you think the body repairs an injury, such as a cut on a finger? The cut is repaired by the production of new cells through cell division. 2. How long do you think this repair process continues? Cell division continues until the cut is repaired. 3. What do you think causes the cells to stop the repair process? Students will likely say that when the cut is filled in, there is no room for more cells to grow. Section 3 Answers

25 This slide is intentionally blank.
End of Custom Shows


Download ppt "Interest Grabber Getting Through"

Similar presentations


Ads by Google