Presentation is loading. Please wait.

Presentation is loading. Please wait.

Some Irradiation Results from a Chip in UMC018 Technology

Similar presentations


Presentation on theme: "Some Irradiation Results from a Chip in UMC018 Technology"— Presentation transcript:

1 Some Irradiation Results from a Chip in UMC018 Technology
Peter Fischer for Christian Kreidl Heidelberg University P. Fischer, ziti, Heidelberg

2 Summary UMC018 Chip was irradiated with X-rays to 7.5Mrad
No degradation after annealing Strange effects around 1.2Mrad Work done in the frame of the DEPFET project Measurements by Christian Kreidl Chip by Ivan Peric P. Fischer, ziti, Heidelberg

3 current memory cells to subtract pedestal using current memory cells
The Chip DCD1 = DEPFET Current Digitizer Readout Chip for DEPFET Sensor columns DEPFET Sensor goes here… DCD1 Chip current memory cells to subtract pedestal 8 bit ADCs using current memory cells P. Fischer, ziti, Heidelberg

4 More Details... P. Fischer, ziti, Heidelberg Test Injection current
Regulated Cascode Sampling Current Subtract 2 ADCs ADC Output Logic Generate ADC + memory cell control signals ADC result calculation, MUX per pixel 3 x 6 lines ADC Steering Signals Serializer Sample Monitoring Pad Clock Divider 600MHz sync for FPGA, Switcher P. Fischer, ziti, Heidelberg

5 Chip Layout & Design UMC 0.18µm technology, 2 x MiniASIC size
ADC in radhard layout (enclosed NMOS, guard rings) Digital part without any precautions 72 inputs P. Fischer, ziti, Heidelberg

6 Pixel Layout Size x: 180µm Size y: 110µm regulated cascode
two 8 bit algorithmic current mode ADCs working interleaved digital stuff (conservative layout) bump pad with 60µm opening test injection P. Fischer, ziti, Heidelberg

7 Chip Test Setup Chip glued & bonded to PCB – no cover Readout via USB
P. Fischer, ziti, Heidelberg

8 Irradiation Facility in Karlsruhe
60 keV X-Ray tube at Institut für Nuclear Physics, Karlsruhe krad/h (depending on distance), calibrated setup Thanks to Dr. Simonis, Mr. Dierlamm and Mr. Ritter for help! P. Fischer, ziti, Heidelberg

9 Irradiation Dose: DCD Operation Mode Measurements (while tube is on!):
krad/h (d=180mm) = 3.1 Mrad krad/h (d=100mm) = 4.4 Mrad Total = 7.5 Mrad DCD Operation Mode clock running permanently control registers loaded every 30s with default values (precaution against SEU) Measurements (while tube is on!): current consumption on VDD (= analog + digital) on selected pixels: - Current memory cell operating range - ADC characteristics - Test injection current value P. Fischer, ziti, Heidelberg

10 Current consumption Total supply current (analog + digital)
Current rises until 1.2Mrad, then settles to pre-rad value 1.2Mrad = pre-rad Probably bit flip In Bias DACs P. Fischer, ziti, Heidelberg

11 Current Memory Cells Cell keeps input voltage constant within ± 10µA
P. Fischer, ziti, Heidelberg

12 ADC Characteristic (ADC value vs. Injection DAC)
Test current injected via ON-CHIP injection DAC SEUs during measurement (more at 1.2Mrad !) most some ADCs BROKEN after 7Mrad and 6 days annealing: back to pre-rad behavior Pixel 59 Pixel 71 BROKEN @ 1.2Mrad 0 Mrad = after anneal. 7 Mrad Many SEUs P. Fischer, ziti, Heidelberg

13 Test Injection Current vs. DAC value
Test injection current is ok (not dead). Some variation. P. Fischer, ziti, Heidelberg

14 ADC Histograms Plot deviation from straight line
45nA  70nA Mrad)  44nA (7 day anneal) P. Fischer, ziti, Heidelberg

15 ADC noise map All ADCs back to initial values after anneal
Readout problems due to setup Readout problems due to setup P. Fischer, ziti, Heidelberg

16 Summary No degradation after 7Mrad of 60keV X-rays
Strange effects at 1.2 Mrad (power higher, ADC dead) P. Fischer, ziti, Heidelberg

17 Thank you! P. Fischer, ziti, Heidelberg

18 Bump Bonding Status in HD
Peter Fischer, ziti, Uni Heidelberg for Christian Kreidl P. Fischer, ziti, Heidelberg

19 Reminder We do gold stud bumping: Key parameters: Advantages:
Create a gold sphere on bonder Place ball on chip, Thermocompress, rip off wire Place all bumps Flip & press & heat (~50g / bump) Can put bumps on both sides to reduce forces Can put isotropic glue with conducting particles Key parameters: Diameter of balls ~ 45µm Min. bond pad size ~ 60µm Min pitch ~ 100µm Advantages: single chip (prototype) process, in house, cheap Drawbacks: sequential, limited # of pads, large force, possible destruction of electronics under pad, need hard substrate, no rework P. Fischer, ziti, Heidelberg

20 Tests with Dummy Chips Aluminum on Silicon structures
Substrate and ‘chip’ Trace pattern to check contact & shorts P. Fischer, ziti, Heidelberg

21 Chip with Bumps P. Fischer, ziti, Heidelberg

22 Flipped Assemblies 80g/bump: all bumps connected, no shorts
20g/bump: 4 of 6 snakes connected, chip fell off P. Fischer, ziti, Heidelberg

23 Large Size Module Mechanical demonstrator of ILC vertex detector module no electrical tests check how to handle a large silicon device check how low pitch flipping works 16 DCD (dummy) chips 36 Switcher (dummy) chips 11,9 cm x 1,6 cm No electrical test possibilities 8 ‘DCD’ chips 8 ‘DCD’ chips 2 x 18 ‘Switcher’ chips P. Fischer, ziti, Heidelberg

24 Placing Chips Close to Each Other (side view)
Switcher (dummy) chips 164 bumps each1 ,4mm x 5,8mm 60g/bump = 9,8kg/chip Edge of flip tool P. Fischer, ziti, Heidelberg

25 ILC Mechanical Sample P. Fischer, ziti, Heidelberg

26 Minimum gap 50µm gap 50µm gap P. Fischer, ziti, Heidelberg
P. Fischer, ziti, Heidelberg

27 Module End 224 bumps/chip, 1.35mm x 4.95mm, 13.4kg/chip 200µm gap
P. Fischer, ziti, Heidelberg

28 Full sample One module populated with 52 chips No failures !
P. Fischer, ziti, Heidelberg

29 Effort Bonding process: cleaning, mounting, aligning, bumping
Switcher: 11min DCD: 13min Flipping process: pickup, aligning, thermocompression 9 min 2 days of work including learning Improvements: build better mounting device for single chip bumping (mechanical clamp) P. Fischer, ziti, Heidelberg

30 Thank you! P. Fischer, ziti, Heidelberg

31 ADC Design in Heidelberg
Peter Fischer, ziti, Uni Heidelberg ADC Design: Ivan Peric P. Fischer, ziti, Heidelberg

32 Content Algorithmic / Pipeline ADC principles Voltage vs. Current Mode
ADC in DEPFET readout chip Reminder: ADC of David Muthers (Kaiserslautern) Comparison of figures of Merit P. Fischer, ziti, Heidelberg

33 Algorithmic (Cyclic) ADC
Idea: Compare signal to half scale  generate BIT If BIT = 1: subtract half scale Multiply result by two Restart over again Every cycle produces a new bit Very popular architecture Resolution limited by precision of Compare / Subtract / Multiply Comparator requirements are relaxed by two threshold per stage (and some error correction) P. Fischer, ziti, Heidelberg

34 ADC Stage + + - ADC DAC k Bit P. Fischer, ziti, Heidelberg

35 Bit Alignment + RSD Correction
Pipeline ADC Shift value through many stages Can process one new value per cycle More hardware Faster Can scale cells for lower precision in later cells Stage 1 Stage 2 Stage m-1 Stage m Vin 2 2 2 2 Bit Alignment + RSD Correction P. Fischer, ziti, Heidelberg

36 Voltage vs. Current Signal can be voltage or current Voltage: Current
Often natural quantity delivered by circuit Comparison simple Add / Subtract & duplication with switched capacitor circuits Large swings Needs linear capacitors Current May require U->I conversion Low swing operation Add / Subtract very simple Duplication with multiple current copy & add Can do with simple, small capacitors No obvious winner P. Fischer, ziti, Heidelberg

37 Standard Current Memory Cell
Tracking phase: Diode connected transistor Sample on gate capacitance Drawbacks: Charge injection is signal dependent Low output resistance & current dependent Input potential current dependent Large storage cap (low leak) decreases speed Iin / Iout P. Fischer, ziti, Heidelberg

38 Pixel Layout Two 8 Bit ADCs: Current memory cells, Comparators,
Reference sources. Optimized, rad hard layout ADC timing signals (can be shared) 110µm 2 x Output Logic (shift registers…) Very conservative layout Using standard cells P. Fischer, ziti, Heidelberg

39 ADC Characteristic 8 Bit ADC output vs. injection DAC value
P. Fischer, ziti, Heidelberg

40 ADC Noise / INL Plot deviation from ideal value for various inputs
Width mostly from noise in input stage P. Fischer, ziti, Heidelberg

41 Pipeline ADC (Design Study)
P. Fischer, ziti, Heidelberg

42 Comparison: ADC from D. Muthers, Kaiserslautern
Voltage mode Cyclic & Pipeline version Early version used in TRAP chip P. Fischer, ziti, Heidelberg

43 Comparison FoM = P / 2ENoB / f * 1012 (small is good)
HD, I mode Cyclic HD, I mode Pipeline KL, V mode KL, V mode Pipeline Commercial IQ-Analog ENOBs ~ 8 (9) ~ 9 (design) ~ fin=5MHz ~ 9.7 9 speed 6 MS/s 25 MS/s 10 MS/s 75 MS/s 80 MS/s Power 1 mW 4.5 mW 9.5 mW 30 mW 8 mW Layout area ~3.000 µm2 (rad hard) ~ µm2 µm2 (non rad hard) > µm2 µm2 (0.13µm) Additionally Shift register Delay registers ??? - FoM [pJ/conv] 0.65 0.35 1.6 0.48 0.2 FoM = P / 2ENoB / f * (small is good) ADC from HD are VERY small P. Fischer, ziti, Heidelberg

44 Thank you! P. Fischer, ziti, Heidelberg

45 Simple Serial Data Driver
Peter Fischer, ziti, Uni Heidelberg P. Fischer, ziti, Heidelberg

46 Goal Study a serial driver suited to directly drive an FPGA
Find out how Complex Large Power hungry it is. Later: study copper transmission: how long can we go ? How fast can we go ? For which type of cable ? for which power requirement ? P. Fischer, ziti, Heidelberg

47 Design choices Use (free) Aurora protocol from Xilinx No back channel
No channel bonding Minimize protocol engine Use radiation hard library for a test P. Fischer, ziti, Heidelberg

48 Aurora – Protocol Physical layer interface – electrical levels, clock encoding, symbol coding Channel initialization and error handling Link layer: Beginning / End of data IDLE Clock compensation 8B/10B encoding Arbitrary data format, Data packets with arbitrary length 4 Phases: Initialization Synchronization of receiver clock (send some syncs) Data transmission Idle Must inject clock compensation characters from time to time P. Fischer, ziti, Heidelberg

49 Components FIFO: (data buffer) Control FSM 8b/10b Encoder Serializer
LVDS-Driver P. Fischer, ziti, Heidelberg

50 Initialisation RESET TXRES_0 TXRES_1 P. Fischer, ziti, Heidelberg
ln_cnt < N+2 TXRES_1 zur Validierung res_cnt < 3 P. Fischer, ziti, Heidelberg

51 Validation VAL/A/ VAL/R/ VAL/K/ CV_0 CV_1 P. Fischer, ziti, Heidelberg
von Initialisierung idle_cnt = 32 idle_cnt < 32 idle_cnt = 32 VAL/K/ val_cnt = 60 val_cnt = 60 val_cnt = 60 CV_0 CV_1 IDLE / Daten P. Fischer, ziti, Heidelberg

52 Idle CC_1 IDLE/A/ IDLE/R/ IDLE/K/ P. Fischer, ziti, Heidelberg
ev_cnt < 12 CC_1 ccc_cnt = 10000 ccc_cnt = 10000 IDLE/A/ idle_cnt = 32 IDLE/R/ ccc_cnt = 10000 von Daten / Valid. idle_cnt = 32 idle_cnt < 32 IDLE/K/ valid_data & even valid_data & even valid_data & even Daten P. Fischer, ziti, Heidelberg

53 Data Transfer CC_3 CC_4 SCP_0 SCP_1 DATA CC_2_0 CC_2_1 CC_5_1 CC_5_0
von IDLE / Val. valid_data !valid_data & !even DATA PADDING CC_2_0 CC_2_1 !valid_data & even !valid_data CC_5_1 CC_5_0 ECP_1 ECP_0 IDLE !valid_data valid_data Daten P. Fischer, ziti, Heidelberg

54 Serializer For simplicity: Realize in CMOS
Use shift register with load Load generation most time critical Several circuits have been compared Minimal speed: 600 MHz Reached 1.9GHz with standard cells P. Fischer, ziti, Heidelberg

55 Test circuit on Xilinx Evaluation board
Generate Aurora compatible parallel data stream Send to MGT serializer Loopback via SATA cable Receiver uses Aurora protocol FSM, 8b/10b P. Fischer, ziti, Heidelberg

56 Sample result: data transfer and Idle
P. Fischer, ziti, Heidelberg

57 Synthesis with VST library
First Using VST library P. Fischer, ziti, Heidelberg

58 Simplification Try designs with NO clock compensation characters
P. Fischer, ziti, Heidelberg

59 Synthesis with Rad hard library
P. Fischer, ziti, Heidelberg

60 Power estimation No LVDS driver (which will dominate!)
Using VST Library Rad hard ~ x4 P. Fischer, ziti, Heidelberg

61 Place & Route ~200 x 200mm2 for rad had design
P. Fischer, ziti, Heidelberg

62 Next steps Study realistic, fast LVDS driver
Study cable properties & modelling First step: Simulated eye-diagram with Kaiserslautern driver + 10 cable, 24AWG (no pre-emphasis) P. Fischer, ziti, Heidelberg

63 Thank you! P. Fischer, ziti, Heidelberg


Download ppt "Some Irradiation Results from a Chip in UMC018 Technology"

Similar presentations


Ads by Google