Presentation is loading. Please wait.

Presentation is loading. Please wait.

Acid-Base Analysis.

Similar presentations


Presentation on theme: "Acid-Base Analysis."— Presentation transcript:

1 Acid-Base Analysis

2 Sources of blood acids Volatile acids Non-volatile acids
H2O + dissolved CO2 Inorganic acid Organic acid H HCO3- H2CO3 Keto acid Lactic acid

3 Henderson-Hasselbalch
pH = pK + log _[HCO3]_ s x PCO2 pK = 6.1 s =

4 Renal mechanisms Excrete H+ into urine
Active exchange of Na+ for H+ in tubules Carbonic anhydrase, in renal epithelial cells, assures high rate of carbonic acid formation <1% urine acid is free H+ Resorb filtered HCO3-, along with Na+ Excrete H2PO4, using phosphate buffer When phosphate buffer consumed, see H+ + NH3 = NH4+

5 Renal Compensation Metabolic acidosis: Respiratory acidosis:
Phosphate and ammonia buffers used as plasma bicarb is deficient Respiratory acidosis: Increased H+ excretion, HCO3- retention Metabolic alkalosis: Increased urine HCO3- excretion Respiratory alkalosis: Decreased resorption of HCO3-

6 Other compensation Hypokalemia Most K+ is intracellular
When K+ deficient, see redistribution to extracellular space (there Ki low) H+ moves intracellularly to balance K+ (keep) exchanged for H+ in distal tubules Excrete H+, resorb HCO3-

7 Other compensation Hyponatremia Chloride
Renals Na+ resorption requires H+ excretion HCO3 resorbed Chloride Freely exchanged across membranes (In=Ex) When chloride deficient, other anions must “substitute”…increase HCO3-

8 Nomenclature

9 Partial Pressure

10 pCO2 pO2 160 Atmosphere 40 100 alv systemic circulation 45 97 ~47
160 Atmosphere 40 100 alv systemic circulation 45 97 ~47 Capillary ~47 <39 <54 ~5 extravascular fluid >55 <1 cells

11 CO2 Transport Endothelium RBC ECF Cells 5% CO2 Dissolved CO2 = pCO2
30% CO2 + Hb = HbCO2 CarboxyHgb CO2 65% CO2 CO2 + H2O = HCO3 + H+ Utilizes carbonic anhydrase CO2 CO2 Transport

12 Excretion of CO2 Metabolic rate determines how much CO2 enters blood
Lung function determines how much CO2 excreted minute ventilation alveolar perfusion blood CO2 content

13 Hgb dissociation curve
20 % Sat 40 100 75 50 pO2 25 60 80 100

14 Dissociation curve % Sat Shifts pO2

15 Alveolar oxygen equation
Inspired oxygen = 760 x .21 = 160 torr Ideal alveolar oxygen = PAO2 = [PB - PH2O] x FiO2 - [PaCO2/RQ] = [ ] x [40/0.8] = [713] x [50] = 100 torr or 100 mmHg If perfect equilibrium, then alveolar oxygen equals arterial oxygen. ~5% shunt in normal lungs

16 Normal Oxygen Levels

17 Predicting ‘respiratory part’ of pH
Determine difference between PaCO2 and 40 torr, then move decimal place left 2, ie: IF PCO2 76: = 36 x 1/2 = 18 = 7.22 IF PCO2 = 18: = 22 = 7.62

18 Predicting metabolic component
Determine ‘predicted’ pH Determine difference between predicted and actual pH 2/3 of that value is the base excess/deficit

19 Deficit examples IF pH = 7.04, PCO2 = 76 Predicted pH = 7.22
= x 2/3 = 12 deficit IF pH = 7.47, PCO2 = 18 Predicted pH =7.62 = x 2/3 = 10 excess

20 Hypoxemia - etiology Decreased PAO2 (alveolar oxygen)
Hypoventilation Breathing FiO2 <0.21 Underventilated alveoli (low V/Q) Zero V/Q (true shunt) Decreased mixed venous oxygen content Increased metabolic rate Decreased cardiac output Decreased arterial oxygen content

21 Blood gases PaCO2 : pH relationship
For every 20 torr increase in PaCO2, pH decreases by 0.10 For every 10 torr decrease in PaCO2, pH increases by 0.10 PaCO2 : plasma bicarbonate relationship PaCO2 increase of 10 torr results in bicarbonate increasing by 1 mmol/L Acute PaCO2 decrease of 10 torr will decrease bicarb by 2 mmol/L


Download ppt "Acid-Base Analysis."

Similar presentations


Ads by Google