Presentation is loading. Please wait.

Presentation is loading. Please wait.

MATLAB Software.

Similar presentations


Presentation on theme: "MATLAB Software."— Presentation transcript:

1 MATLAB Software

2 Introduction Matlab (Matrix Laboratory) –
An interactive program that is suitable for run computations, draw graphs and much more (graphical interface). A programming language for technical computing (scripts).

3 Introduction

4 Command Window Matlab as a calculator: Lets run our first command:
Command line Matlab as a calculator: Lets run our first command: 1 + 1

5 Command Window Previous Command line Output (answer)
Current Command line The output is displayed Get the previous command by pressing up arrow keyboard Can clear window using the command clc

6 All workspace variables
Workspace Window Workspace Window All workspace variables Variable value

7 Command History Window

8 Current Directory Window
Files

9 Changing The Current Directory

10 Variable Format format short g Best of fixed or floating point format with 5 digits. format long g Best of fixed or floating point format with 15 digits for double and 7 digits for single. format short e Floating point format with 5 digits. format long e Floating point format with 15 digits for double and 7 digits for single.

11 Starting MATLAB The various forms of help available are:
help Types a matlab help text helpwin Opens a matlab help GUI demo Starts the matlab demonstration

12 Matrices Variables: Array a = 1; speed = 1500; K = [0.1 0.15 0.2];

13 Matlab Special Numbers
pi i and j Imaginary unit eps Relative precision 2-52 Inf Infinity (divide by zero or larger then realmax) NaN Not a Number (0/0 Inf/Inf)

14 Matrices Two Dimensional Matrices: Multi Dimensional Matrices:
1 2 3 4 5 6 Multi Dimensional Matrices:

15 Useful Matrix Generators
zeros a matrix filled with zeros ones a matrix filled with ones rand a matrix with uniformly distributed random elements eye identity matrix

16 Useful Matrix Generators
>> a = zeros(2,3) a = 0 0 0 >> b = ones(2,2) b = 1 1

17 Useful Matrix Generators
>> u = rand(1,5) u = >> eye(3) ans = 1 0 0 0 1 0 0 0 1

18 Subscripting >> u(3) ans = 0.1763 >> u(1:3)

19 Subscripting >> a = [1 2 3;4 5 6;7 8 9] a = 1 2 3 4 5 6 7 8 9
ans = 8

20 Subscripting >> a(2:3,3) ans = 6 9 >> a(2,:) 4 5 6

21 Deleting Rows or Columns
>> a(:,2) = [] a = 1 3 4 6 7 9

22 Matlab Arithmetic Operators
Plus  + Minus - multiply * power ^ Backslash or left matrix divide \ Slash or right matrix divide /

23 Matlab Arithmetic Operators
multiply .* Array power                             .^ Left array divide .\ Right array divide   ./

24 Matlab Arithmetic Operators
>> [1 2;3 4] / 2 ans = >>2 \ [1 2;3 4]

25 Matlab Arithmetic Operators
>> [1 2;3 4] ^ 2 ans = >> [1 2;3 4] .^ 2

26 Matlab Arithmetic Operators
>> [1 2;3 4] .\ [5 6;7 8] ans = >> [1 2;3 4] ./ [5 6;7 8]

27 Simple Operations on Matrices
Finding the maximal number in a vector >> x = 1 : 50; >> max(x) 50 Finding the minimal number in a vector >> min(x) 1 Finding the mean of a vector >> mean(x) 25.500

28 Simple Operations on Matrices
Finding the maximal numbers in each matrix column >> x = [1 2 3;7 8 9;4 5 6]; >> max(x) ans = Think of one way to get the maximal element in the entire matrix…

29 Simple Operations on Matrices
Finding the mean of each matrix column >> mean(x) ans = How do we get the mean of each matrix row?

30 Simple Operations on Matrices
Finding the size of a matrix >> x = 1 : 50; >> size(x) ans = Finding the length of a vector >> length(x) 50

31 Simple Operations on Matrices
x =[ 2 4 6;3 6 9]; size(x) 2 3 length(x) 3

32 Sub-array searching The “find” operation >> x = [2 8 7 6 4 2 3];
>> find(x == 2) 1 6 >> find(x > 3)

33 Sub-array searching >> x = [1 2 3 7 8 9 4 5 6];
>> [h, w] = find(x > 5) h = w =

34 3D arrays - example

35 3D arrays - example

36 Interpolation Function
One-dimensional data interpolation yi = interp1(x,y,xi, 'linear') yi = interp1(x,y,xi, 'spline') yi = interp1(x,y,xi, 'cubic')

37 Interpolation Function
>> x=[ ]; >> y=[ ]; >> yi = interp1(x,y,2.5, 'linear') yi = 5

38 Interpolation Function
Two-dimensional data interpolation ZI = interp2(X,Y,Z,XI,YI)

39 Interpolation Function
Cubic spline data interpolation yi = spline(x,y,xi) >> x=[ ]; >> y=[ ]; >> yi = spline (x,y,2.5) yi = 5

40 Learning Polynomials MATLAB represents polynomials as row vectors containing coefficients ordered by descending powers. For example, consider the equation p(x) = x x + 5 To enter this polynomial into MATLAB, use » p=[ ];

41 Polynomial Roots » p = [1 0 -2 -5];
The roots function calculates the roots of a polynomial: r = roots(p) r = i i

42 Polynomial Roots Function poly returns roots to the polynomial coefficients: p2 = poly(r) p2 = e poly and roots are inverse functions

43 Polynomial Evaluation
The polyval function evaluates a polynomial at a specified value. To evaluate p(5), use polyval(p,5) ans = 110

44 Polynomial Evaluation
It is also possible to evaluate a polynomial in a matrix sense. X = [2 4 5; ; 7 1 5]; p(X) = X X + 5 Y = polyvalm(p,X) Y = p(1)*X^3 + p(2)*X^(2) + p(3)*X + P(4)*I Y =

45 Polynomials Convolution
a(x) = x x && b(x) = 4x x + 6 a = [1 2 3]; b = [4 5 6]; c = conv(a,b) c =

46 Polynomials Deconvolution
The syntax for deconv is [q,r] = deconv(c,a) q = r =

47 Polynomial Derivatives
To obtain the derivative of the polynomial p = [ ]; q = polyder(p) q =

48 Polynomial Derivatives
b = [2 4 6]; c = polyder(a,b) c =

49 Polynomial Derivatives
[q,d] = polyder(a,b) q = d = q/d is the result of the operation.

50 Polynomial Integrates
polyint Integrate polynomial analytically. >> p=[ ]; >> polyint(p,-5) ans =

51 Residue

52 Residue [r,p,k] = residue(b,a)

53 Residue b = [ ] a = [ ] [r, p, k] = residue(b,a)

54 Residue r = 1.3320 p = 1.5737 k =

55 Polynomial Curve Fitting
polyfit Fit polynomial to data. P = polyfit(X,Y,N) P(1)*X^N + P(2)*X^(N-1) P(N)*X + P(N+1).

56 Polynomial Curve Fitting
>> x = (0: 0.2:1) x = >> y=x.^2+2.*x+1 y =

57 Polynomial Curve Fitting
>> p = polyfit(x,y,2) p =

58 Polynomial Curve Fitting
pp = spline(x,y) >> x = (0: 0.2:1) x = >> y=x.^2+2.*x+1 y =

59 Polynomial Curve Fitting
>> pp = spline(x,y) pp = form: 'pp' breaks: [ ] coefs: [5x4 double] pieces: 5 order: 4 dim: 1

60 Polynomial Curve Fitting
>> yy = ppval(pp, 0.6) yy = 2.5600

61 Integrate int(S,v) is the indefinite integral of S with respect to v.
>> int('1/(1+x^2)') ans = atan(x)

62 Integrate int(S,v,a,b) is the definite integral of S with respect to v from a to b. >> int('y/(1+x^2)','x',0,1) ans = 1/4*pi*y

63 Derivative diff(X,N,DIM) is the Nth difference function along dimension DIM. >> diff('y^3*sin(x)',3,'x') ans = -y^3*cos(x) >> diff('y^3*sin(x)',2,'y') 6*y*sin(x)

64 2–D Plot Function >> x = -pi:0.01:pi; >> y=sin(x);
plot(X,Y) plots vector Y versus vector X. >> x = -pi:0.01:pi; >> y=sin(x); >> plot(x,y)

65 2–D Plot Function

66 2–D Plot Function >> plot(x)

67 2–D Plot Function If z is complex, plot(z) is equivalent to plot(real(z),imag(z)) >> z=[ i 1+i 2+4i 3+9i i i]; >> plot(z)

68 2–D Plot Function

69 2–D Plot Function >> x = -pi:0.01:pi; >> y=sin(x);
>> z=cos(x); >> plot(x,y,x,z) >> plot(x,y) >> hold on >> plot(x,z)

70 2–D Plot Function

71 2–D Plot Function

72 2–D Plot Function

73 2–D Plot Function >> x = -pi:0.5:pi; >> y=sin(x);
>> z=cos(x); >> plot(x,y,'rp') >> hold on >> plot(x,z,'kd--')

74 2–D Plot Function

75 2–D Plot Function Axis >>axes1=axes('FontName','Arial','FontSize',10,'FontWeight','bold','LineWidth',2); >> box(axes1,'on'); >> hold(axes1,'all');

76 2–D Plot Function

77 2–D Plot Function set(gcf,'Color',[1,1,1])

78 2–D Plot Function >> x = -pi:0.5:pi; >> y=sin(x);
>> plot(x,y,'k-','LineWidth',2)

79 2–D Plot Function

80 2–D Plot Function >>xlabel('\beta')
>>ylabel('y_\beta','Rotation',0) >>title('plot') >>text(0.25,0.15,'HELLOW','FontName','Arial','FontSize',10,'FontWeight','bold')

81 2–D Plot Function

82 2–D Plot Function >> x = -pi:0.5:pi; >>y=sin(x);
>>z=cos(x); >>plot(x,y,'rp') >>hold on >>plot(x,z,'kd--') >>legend('sin(x)','cos(x)','Location','NorthWest')

83 2–D Plot Function

84 2–D Plot Function

85 2–D Plot Function Axis scaling and appearance
axis([xmin xmax ymin ymax]) Grid lines for two- and three-dimensional plots grid on grid off

86 2–D Plot Function subplot divides the current figure into rectangular panes that are numbered row wise. subplot(m,n,p)

87 2–D Plot Function >> x = -pi:0.5:pi; >>y=sin(x);
>>z=cos(x); >> t=x.*sin(x) >> c=x.*cos(x)

88 2–D Plot Function >> subplot(2,2,1) >>plot(x,y)
>>plot(x,z) >>subplot(2,2,3) >>plot(x,t) >>subplot(2,2,4) >>plot(x,c)

89 2–D Plot Function

90 2–D Plot Function >> x = -pi:0.5:pi; >>y=sin(x);
>>z=cos(x); >> t=x.*sin(x) >> c=x.*cos(x)

91 2–D Plot Function >> figure(1); >> plot(x,y)
>> plot(x,z) >> figure(3); >>plot(x,t) >> figure(4); >>plot(x,c)

92 2–D Plot Function

93 2–D Plot Function

94 2–D Plot Function

95 2–D Plot Function

96 fPlot Function fplot(FUN,LIMS) plots the function FUN between the x-axis limits specified by LIMS = [XMIN XMAX]. sin(1./x), [ ])

97 fPlot Function

98 Logarithmic scale plot
>>semilogx(x,y) Create semilogarithmic plot with logarithmic x-axis >>semilogy(x,y) Create semilogarithmic plot with logarithmic y-axis

99 Logarithmic scale plot
>> x = 0:0.1:10; >> y=10.^x; >> semilogy(x,y) >> grid on

100 Logarithmic scale plot

101 Logarithmic scale plot
>>loglog(x,y) Create a loglog plot >> x = logspace(-1,2); >> y=exp(x); >> loglog(x,y,'-s') >> grid on

102 Logarithmic scale plot

103 Polar Function >>polar(theta,rho) >>t = 0:.01:2*pi;
>>polar(t,sin(2*t).*cos(2*t),'--r')

104 Polar Function

105 Bar Function Plot bar graph (vertical and horizontal) >>bar(x,y)
>>barh(x,y)

106 Bar Function >> x = -2.9:0.2:2.9; >> y=exp(-x.*x);
>> bar(x,y,'r')

107 Bar Function >> x = -2.9:0.2:2.9; >> y=exp(-x.*x);
>> barh(x,y,'r')

108 3–D Plot Function mesh(X,Y,Z) draws a wire frame mesh 1.5m 1m y x
];

109 3–D Plot Function >> x=0:0.5:1.5; >> y=0:0.5:1;
>> mesh(x,y,T) >> axis([ ])

110 3–D Plot Function >> x=0:0.5:1.5; >> y=0:0.5:1;
>> surf(x,y,T) >> axis([ ])

111 3–D Plot Function >>meshc(x,y,T) >>meshz(x,y,T)
>> waterfall(x,y,T)

112 3–D Plot Function The shading function controls the color shading of surface and patch graphics objects. >>shading flat >>shading interp

113 3–D Plot Function >>sphere(16) >>axis square
>>shading flat >>title('Flat Shading')

114 3–D Plot Function >>sphere(16) >>axis square
>>shading interp >>title('Flat Shading')

115 3–D Plot Function >> view(az,el)

116 3–D Plot Function sets the default two-dimensional view, az = 0, el = 90. sets the default three-dimensional view, az = -37.5, el = 30. >> cylinder

117 3–D Plot Function >> peaks

118 3–D Plot Function >> contour(peaks)

119 3–D Plot Function >>ezmesh(fun,domain)
x.*exp(-x.^2-y.^2),[ ])

120 M-file Each M-file function has an area of memory, separate from the MATLAB base workspace, in which it operates. This area, called the function workspace, gives each function its own workspace context.

121 M-file user_entry = input(' Expression ')

122 Conditionally execute statements
if expression1 statements1 elseif expression2 statements2 else statements3 end

123 Conditionally execute statements

124 Relational Operators == ~= < > <= >= Equal Not equal
Less than < Greater than > Less than or equal <= Greater than or equal >=

125 for for variable = expression statement ... end

126 for

127 while while expression statement ... end

128 while

129 Switch-Case switch switch_expr case case_expr 1
statement, ..., statement case case_expr 2 otherwise end

130 Switch-Case

131 Continue Pass control to next iteration of for or while loop

132 Break Terminate execution of for or while loop

133 Save & Load >>save('filename', 'var1', 'var2', ...)
>>load('filename', 'var1', 'var2', ...)

134 Clear >>clear('name1','name2','name3',...)

135 Solve solve('eqn1','eqn2',...,'eqnN')
>>[x,y] = solve('x^2 + x*y + y = 3','x^2 - 4*x + 3 = 0') >>x= solve('p*sin(x) = r')

136 Function function [out1, out2, ...] = funname(in1, in2, ...)

137 Function

138 Function

139 Function

140 Function

141 Function

142 Nonlinear Equations >>x = fsolve(fun,x0)
fsolve finds a root (zero) of a system of nonlinear equations. >>x = fsolve(fun,x0) starts at x0 and tries to solve the equations described in fun.

143 Nonlinear Equations You want to solve the following system for x
starting at x0 = [-5 -5].

144 Nonlinear Equations

145 Nonlinear Equations

146 Nonlinear Equations >>x = fsolve(fun,x0,options)
>> options= optimset ('param1',val.1,'param2',val.2,...) >>x = fsolve(fun,x0,options) This structure solves the equations with the optimization options specified in the structure options.

147 Nonlinear Equations Display 'off' | 'iter' | 'final' MaxIter
Positive integer TolFun

148 Nonlinear Equations

149 Nonlinear Equations

150 dsolve dsolve('eqn1','eqn2', ...)
>> S = dsolve('Dx = -a*x','x(0) = 1') >> [x y] = dsolve('Dx = y', 'Dy = -x', 'x(0)=0', 'y(0)=1')

151 Numerical Solution of ODE
Initial Value Problems (IVP)

152 Numerical Solution of ODE
[T,Y] = solver(odefun, [t0 tf],y0,options)

153 Numerical Solution of ODE
options = odeset('name1',value1,'name2',value2,...)

154 Numerical Solution of ODE

155 Numerical Solution of ODE

156 Numerical Solution of ODE

157 Numerical Solution of ODE
Boundary Value Problems (BVP)

158 Numerical Solution of ODE
(BVP) (IVP)

159 Numerical Solution of ODE
sol = bvp4c(odefun,bcfun,initguess,options)

160 Numerical Solution of ODE
initguess = bvpinit([t0 tf],[y10 y20]); options = bvpset('name1',value1,'name2',value2,...)

161 Numerical Solution of ODE

162 Numerical Solution of ODE

163 Numerical Solution of ODE

164 Optimization Unconstrained nonlinear optimization
[x,fval] = fminsearch(fun,x0,options) fminsearch attempts to find a minimum of a scalar function of several variables, starting at an initial estimate.

165 Optimization A classic test example for multidimensional minimization:

166 Optimization

167 Optimization

168 Optimization Constrained nonlinear optimization
[x,fval] = fminbnd(fun,x1,x2,options) fminbnd attempts to find a minimum of a function of one variable within a fixed interval.

169 Optimization

170 Optimization

171 Optimization Other optimization functions: >> fmincon
>> fminunc >> linprog

172 EXCEL Software

173 Introduction to Excel Sheet, Row, Column, Cell

174 Introduction to Excel Name Box (Cell Address)
Formula Bar (Contents of Cell)

175 Introduction to Formulas
All Formulas begin with = Basic Formulas (numbers, cells, or both) Add + Subtract - Multiply * Divide / =10+5 =10-5 =10*5 =10/5 =B3+C3 =B3-C3 =B3*C3 =B3/C3 =B3+5 =B3-5 =B3*5 =B3/5

176 Introduction to Formulas
Formulas can reference different “Sheets” =A10*Sheet2!B5 is the value from Cell A10 of our current worksheet multiplied by the value of Cell B5 from Sheet 2

177 Introduction to Formulas
All Formulas begin with = Automatic Functions (Toolbar button Σ) Menu Insert/Function for more options

178 Figures in Excel

179 Figures in Excel

180 Figures in Excel

181 Figures in Excel

182 Figures in Excel

183 Matrix Operations in Excel
Select the cells in which the answer will appear

184 Matrix Multiplication in Excel
Enter “=mmult(“ Select the cells of the first matrix Enter comma “,” Select the cells of the second matrix Enter “)”

185 Matrix Multiplication in Excel
Enter these three key strokes at the same time: Control Shift Enter

186 Matrix Commands in Excel
Excel can perform some useful, albeit basic, matrix operations: Addition & subtraction; Scalar multiplication & division; Transpose (TRANSPOSE); Matrix multiplication (MMULT); Matrix inverse (MINVERSE); Determinant of matrix (MDETERM);

187 Excel link for use with MATLAB

188 Excel link for use with MATLAB

189 Excel link for use with MATLAB

190 Excel link for use with MATLAB

191 Excel link for use with MATLAB

192 Excel link for use with MATLAB

193 Excel link for use with MATLAB

194 Excel link for use with MATLAB

195 Optimization

196 Optimization

197 Optimization

198 Optimization

199 Optimization

200 Optimization

201 Optimization

202 Optimization

203 Optimization

204 Optimization

205 Optimization

206 Optimization Optimum distribution


Download ppt "MATLAB Software."

Similar presentations


Ads by Google