Download presentation
Presentation is loading. Please wait.
1
ECE2030 Introduction to Computer Engineering Lecture 14: Sequential Logic Circuits
Prof. Hsien-Hsin Sean Lee School of Electrical and Computer Engineering Georgia Tech
2
Sequential Logic Circuits
Combinational circuits inputs outputs Storage Element delay Next State Present State Controller by a periodic clock or an event trigger Sequential circuits Combinational logic circuits State information (stored in memory) Output is a function of inputs and present state Can be synchronous or asynchronous
3
State machine example A TV channel control 1 CH 2 CH 3 1 1 CH 1
4
Sequential Logic Circuits
outputs inputs Combinational circuits Next State Present State Storage Element clock Synchronous Circuits use clock pulse to synchronize For a typical synchronous design, data are latched into the storage upon clock transition (edge-triggered)
5
Closed-Loop Logic for Storing Information
1 Tpd Tpd A buffer
6
SR Latch QN S Q R
7
SR Latch R Q QN S S R Q QN 1 Reset Set Undefined No Change
8
SR Latch S Q QN R S R Q QN 1 Reset Set Undefined No Change
9
SR Latch w/ Control S Q C QN R C S R Q QN X 1 Reset Set Undefined
X 1 Reset Set Undefined No Change
10
Issue of an SR Latch or SR Latch
Q QN 1 Q QN S S R Q Race, and Unstable QN
11
D Latch D Q C QN C D Q QN X 1
12
D Latch Keeping Data for Read
Q Q
13
D Latch Writing Data D
Q D Q
14
10T D Latch w/ Transmission Gates
En En Q D Q En
15
10T D Latch w/ Transmission Gates
En=1 En D Q D D Q D En Writing Data
16
10T D Latch w/ Transmission Gates
En=0 En D Q D D_new Q D En Writing Data
17
D Latch Symbol En D Q X NC 1 D Q En Q NC: No Change
18
Latch is Transparent D Latch is called “transparent” or “level sensitive” Output follows input instantaneously En D Q Q Transparent
19
Transparency Property
D Q Transparent Latch En D En Q Storage Cell D En Q Storage Cell 1 Latch acts like a Wire
20
Problem of Transparency
Other Logic Circuits D Q Transparent Latch En A momentary input change tunnels through the latch and the entire circuitry What problem this can cause?
21
Problem of Transparency
D Q D Transparent Latch En 1 En D Q Oscillating Unstable Unstable
22
Eliminating Transparency
D Q D Q Transparent Latch Transparent Latch En En Separating the input and output, so they are independently controlled Only open one gate at a time to avoid tunneling
23
Behavior of Master-Slave Latches
D Q D Q Storage Cell Storage Cell (0) 1 En En D Q D Q Storage Cell (1) Storage Cell En En 1
24
Behavior of Master-Slave Latches
D1 Q1 D2 Q2 D1 En En En D1 (initialized to1) Q1=D2 Q2 A Toggle Cell, will discuss more later
25
Behavior of Master-Slave Latches
D1 Q1 D2 Q2 En En En D1 (input) Q1=D2 Q2
26
Behavior of Master-Slave Latches
D1 Q1 D2 Q2 En En En D1 (input) Q1=D2 Q2
27
Flip-Flop (F/F) D1 Q1 D2 Q2 1-bit Flip Flop Input Output
Enable (or clock) 1-bit Flip Flop Input Output Enable (or clock)
28
Negative Edge Triggered Flip-Flop
Input Output D1 Q1 D2 Q2 Enable (or clock) clock Input Q1=D2 Output
29
Positive Edge Triggered Flip-Flop
Input Output D1 Q1 D2 Q2 Enable (or clock) clock Input Q1=D2 Output
30
Positive Edge Triggered Flip-Flop
Input Output D1 Q1 D2 Q2 Enable (or clock) clock Input Q1=D2 Output
31
Flip Flops Symbols Positive Edge Triggered Negative Edge Triggered
Q D Q C Q C Q Positive Edge Triggered D Flip Flop Negative Edge Triggered D Flip Flop
32
Dual-phase Non-overlapped Clocks
In reality, enable control is not ideal Use dual phase clocks (1 and 2) to replace Enable and its inversion 1 Q1=D2 Input Output 2 D2 follows 1 while Output follows 2
33
Dual-Phase Non-overlapped Clocks
Input Output D1 Q1 D2 Q2 1 2 1-bit Flip Flop Input Output 1 2
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.