Presentation is loading. Please wait.

Presentation is loading. Please wait.

Hisanori Yamane, Shinsaku Amano

Similar presentations


Presentation on theme: "Hisanori Yamane, Shinsaku Amano"— Presentation transcript:

1 Hisanori Yamane, Shinsaku Amano
Supplementary information Synthesis of suboxides, Ti8(SnxBi1−x)O7 and Ti11.17(Sn0.85Bi0.15)3O10 , using a Bi flux and their crystal structures Hisanori Yamane, Shinsaku Amano contents Fig. S1 Twin structure of Ti8(Sn0.72Bi0.28)O7. Table S1 Anisotropic displacement parameters (Uij/Å2) of Ti8(SnxBi1−x)O7 and Ti11.17(Sn0.85Bi0.15)3O10. Fig. S2  Atomic arrangements around Ti3 and Ti4 sites, Ti4-centered Sn/Bi octahedra, and O–Ti megatetrahedron of Ti11.17(Sn0.85Bi0.15)3O10. Fig. S3 Observed (blue line), calculated (red line) and difference (gray line) powder XRD patterns of sample B3. The tick marks below the pattern represent the diffraction angles of all possible Bragg reflections. Table S2 Atomic coordinates and equivalent isotropic displacement parameters (Ueq/Å2) for Ti8(Sn0.77Bi0.23)O7 by the Rietveld analysis for the powder XRD pattern (Fig. S3). Fig. S4 Powder XRD pattern of sample B4. Fig. S5 Electrical resistivity of a Ti8(Sn0.77Bi0.23)O7 sintered polycrystalline bulk.

2 a a’ c b’ b 46º twin plane O Ti Bi/Sn (1 5 0)
Fig. S1 Twin structure of Ti8(Sn0.72Bi0.28)O7.

3 Table S1 Anisotropic displacement parameters (Uij/Å2) of Ti8(SnxBi1−x)O7 and Ti11.17(Sn0.85Bi0.15)3O10. formula Atom U11 U22 U33 U23 U13 −U12 Ti8(Sn0.41Bi0.59)O7 Ti1 0.0038(2) 0.0060(2) (19) − (13) Ti2 0.0077(3) 0.0039(3) 0.0090(3) Ti3 0.0035(3) 0.0038(3) 0.0041(2) Sn/Bi (11) (11) (11) O1 0.0059(8) 0.0049(7) 0.0039(7) −0.0005(5) O2 0.0045(10) 0.0057(9) 0.0034(9) O3 0.0066(15) 0.0070(14) 0.0031(13) Ti8(Sn0.65Bi0.35)O7 (19) (19) (18) − (12) 0.0069(3) 0.0026(2) 0.0037(2) 0.0028(2) 0.0039(2) (12) (12) (12) 0.0054(7) 0.0033(6) 0.0043(7) −0.0001(5) 0.0044(9) 0.0047(9) 0.0026(9) 0.0059(13) 0.0057(13) 0.0028(13) Ti8(Sn0.72Bi0.28)O7 (19) (18) − (13) 0.0030(2) 0.0075(3) 0.0042(2) 0.0033(2) (13) (13) (13) 0.0055(7) 0.0040(7) −0.0003(5) 0.0043(9) 0.0051(9) 0.0038(9) 0.0050(13) 0.0065(13) 0.0039(13) Ti8(Sn0.935Bi0.065)O7 (17) (17) (16) − (11) 0.0056(2) 0.0065(2) 0.0034(2) 0.0043(2) (13) (13) (13) 0.0044(6) 0.0042(6) 0.0046(6) 0.0035(8) 0.0043(8) 0.0052(8) 0.0039(12) 0.0058(12) 0.0042(12) Ti11.17(Sn0.85Bi0.15)3O10 0.0041(5) 0.0049(10) −0.0013(9) 0.0177(4) 0.0079(4) 0.0147(15) Ti4 0.006(3) Ti5 0.0068(7) 0.0184(3) 0.0127(2) 0.0031(16) 0.0062(10) −0.0010(13) 0.0065(9) 0.0008(9)

4 O1 O2 Ti1 Ti5 Ti1 Ti2 O1 O1 O1 O1 Ti3 Sn/Bi Sn/Bi Sn/Bi Ti4 Sn/Bi
a c b Sn/Bi Ti1 Ti4 Ti2 Sn/Bi Sn/Bi Sn/Bi Sn/Bi Sn/Bi O–Ti megatetrahedron Ti4-centered Sn/Bi octahedron Fig. S2  Atomic arrangements around Ti3 and Ti4 sites, Ti4-centered Sn/Bi octahedra, and O–Ti megatetrahedron of Ti11.17(Sn0.85Bi0.15)3O10.

5 Diffraction angle, 2θ / º (CuKα)
90 80 70 60 50 40 30 20 10 Counts 40,000 35,000 30,000 25,000 20,000 15,000 10,000 5,000 Fig. S3 Observed (blue line), calculated (red line) and difference (gray line) powder XRD patterns of sample B3. The tick marks below the pattern represent the diffraction angles of all possible Bragg reflections. Table S2 Atomic coordinates and equivalent isotropic displacement parameters (Ueq/Å2) for Ti8(Sn0.77Bi0.23)O7 by the Rietveld analysis for the powder XRD pattern (Fig. S2). formula Atom Site Occ. x y z Beq Ti8(Sn0.77Bi0.23)O7 Ti1 8q 1 0.3171(4) (18) 1/2 0.8 Ti2 4g 0.1797(5) Ti3 4i 0.2037(3) Sn/Bi 2c 0.773(8)/0.228(8) O1 8p 0.1720(12) 0.1189(5) O2 0.3213(9) O3 2d Space group Cmmm a = (2) Å, b = (5) Å, c = (8) Å R-Bragg = %, Rwp = %, Rp = 8.79 %, GOF = 5.56

6 10 20 30 40 50 60 70 Diffraction angle, 2 θ/ deg. (CuKα) Intensity, I (a. u.) (Ti2O) (TiO1.51) (TiO) Fig. S4 Powder XRD pattern of sample B4.

7 0.8 0.6 0.4 0.2 0.0 Resistivity, ρ/Ωm 10−5 300 250 200 150 100 50 Temperature, T/K Fig. S5 Electrical resistivity of a Ti8(Sn0.77Bi0.23)O7 sintered polycrystalline bulk.


Download ppt "Hisanori Yamane, Shinsaku Amano"

Similar presentations


Ads by Google