Presentation is loading. Please wait.

Presentation is loading. Please wait.

Cisco Routers.

Similar presentations


Presentation on theme: "Cisco Routers."— Presentation transcript:

1 Cisco Routers

2 Cisco’s Market Share 40% D-Link 3 Com Nortel Cygnus Etc.. CISCO 60%

3 Router is an internetworking component, that connects networks which are at different geographical locations.

4 Diagram of 2501 series Router
Telephone modem Serial 1 AUI E 0 Console Serial 0 AUX V.35 modem PC

5 Interfaces on a Router

6 1. Ethernet It is a LAN interface. Some of the models have an
1. Ethernet It is a LAN interface. Some of the models have an RJ45 port for 10baseT or 10/100. And some other have a 15 pin female connector AUI (Attachment Unit Interface). 2. Serial It is a 60 pin female WAN interface for leased line 3. BRI/PRI It is a RJ45 WAN interface for ISDN 4. Async It is a 37 pin female connector for dial ups. 5. Console It is a RJ45 Connector used to configure the Router for the first time. 6. Auxiliary RJ45 Connector for remote access administration.

7 Routers Modular Fixed Modular Routers
These type of routers have up gradable slots, and the number of ports can be increased just by adding cards in the slots. Fixed Routers These types of routers have fixed number of ports.

8 Cisco Router’s Series Cisco 700, 800, 1600, 1700, 2500, 2600, 3600, 4000, 5000, 7000,10000, Fixed Modular 700, 800,….2500 2600,….., 12000 1750 & 1751 exceptionally are Modular Routers.

9 Cisco’s Hierarchical Model

10 Access Layer 700, …, 2500 Distribution Layer 2600, …, 5000 Core Layer 7000, …, 12000

11 Transceiver

12 Internal Components of a Router

13

14 Boot ROM : It stores the mini IOS (Internet work Operating System) image (RX Boot) with extremely limited capabilities and POST routines and core level OS for maintenance. FLASH : It is an EPROM chip that holds most of the IOS Image. It maintains everything when router is turned off. RAM : RAM holds running IOS configurations and provides caching. RAM is a volatile memory and looses its information when router is turned off. The configuration present in RAM is called Running configuration. NVRAM : It is a re-write able memory area that holds router’s configuration file. NVRAM retains the information when ever router is rebooted. Once configuration is saved, it will be saved in NVRAM and this configuration is called Startup Configuration.

15 Configuration of a Router
Router for the first time is configured through the CONSOLE port.COM port of a PC is connected to the console port of router with a console cable by using a transceiver. Router is accessible by a tool. In windows, it is called HYPER TEMINAL. As soon as the router is powered on and accessed, the following things happen, POST BOOT STRAP FLASH ROM (mini IOS) If IOS is Corrupted NVRAM Setup Mode

16 In Setup mode, there will be a message,
“Would You Like To Enter The Initial Configuration [Y/N]” : If “Y” then, initial configuration starts. If “N” would you like to terminate the auto installation? Press “RETURN” to get started……You will land on the default prompt of the Router “ ROUTER >”. Router>_

17 Working Modes Of a Router
User Mode (Default mode) Privilege or Administrative Mode Global Configuration Mode Interface Configuration Mode 5. Line Configuration Mode 6. Router Mode 7. Sub-Interface Mode

18 USER MODE Router> is the user mode, I,e the default prompt. It means that when ever a router boots successfully it lands into the user mode. Router cannot be configured from this mode, but it is used for just monitoring purpose. Router> en Router #

19 PREVILEGE MODE Router# it is the administrating mode, we can check whether the settings and configurations made have been implemented or not. Eg. “Router # Sh int e0”. If it is new router all the interfaces are by default shut down, so the message will be, “ Ethernet 0 is administratively down, line protocol is down.”

20 Global Configuration Mode
As the name indicates, it is a global configuration mode I,e. we can configure any interface from this mode, just by entering into the interface mode. Router# Config t Router (Config)#

21 The “Clock” Command The clock command is used to set the clock of Router. Syntax. Router# clock set hh:mm:ss Day of week Month Year E.g. Router#clock set 16:35:00 1 April 2003 Note* This is the only configuration which can be done from privilege mode,every other configuration should be done at global configuration mode only.

22 Some of the important show commands in privilege mode
Router# sh clock sh int (interface name eg e0) Sh history Sh memory Sh running-config Sh startup-config To save configuration from RAM TO NVRAM Router#Copy Running-config Startup-config (or) Router#Write Memory

23 To configure Hostname (or) Identification of Router over the network.
Router#conf t Router(config)#Hostname R_2503 Router(config)#^Z To configure Logging banner. Router#conf t Router(config)#Banner Motd # Enter text message………….# Router(config)#^Z

24 Router Password Configuration
Previlege Password Virtual Terminal Password Console Password Auxillary Password

25 Previlege PASSWORDS Enable Password Enable Secret Enable Password:- It is global command restricts access to the previlege mode, the password is in clear text. Router(config)#Enable password 123 Enable Secret:-Here the password is in encrypted form. Router(config)#Enable secret cisco

26 Virtual Terminal Password
It establishes a login password on incoming Telnet sessions. Router#conf t Router(config)#Line vty 0 4 Router(config-line)#Login Router(config-line)#password cisco Router(config-line)#^Z

27 Console Password It establishes a login password on the console terminal. Router#conf t Router(config)#Line Console 0 Router(config-line)#Login Router(config-line)#Password cisco Router(config-line)#^Z

28 Auxillary Password It establishes a login password to remote administration. Router#conf t Router(config)#Line Aux 0 Router(config-line)#Login Router(config-line)#Password cisco Router(config-line)#^Z

29 CONFIGURING INTERFACES
LAN interface (ETHERNET Port) WAN interface (SERIAL Port)

30 ETHERNET Router(config)#Interface Ethernet 0
Router(config-if)#Ip Address Router(config-if)#no shutdown Router(config-if)#^Z Router#Show Int E0

31 SERIAL Router(config)#Interface Serial 0
Router(config-if)#Ip Address Router(config)#clock rate 56000 Router(Config-if)# bandwidth 64 Router(config-if)#No shutdown Router(config-if)#^Z

32 Interpretring The Interface Status
Router# show int s0 Serial0 is up, line protocol is up. Is the messege if the interface is operational. Serial0 is up, line protocol is down….. This is if there is any connection problem. Serial0 is down, line protocol is down….. This is if there is any interface problem. Serial0 is administratively down, line protocol is down….. This is if the interface is disabled.

33 The “CDP” It’s a Cisco's proprietary protocol called the Cisco Discovery Protocol, that gives you a summary of all the directly connected Cisco devices. CDP is a L2 protocol, that discovers neighbor regardless of which protocol suite they are running. When a cisco device boots up, the CDP is loaded by default, but can be disabled at interface level. * The CDP is limited to the immediate neighbors only… The summary includes Device Identifier(eg. Switch configured name or domain name), Port Identifier (eg. Ethernet 0 and serial 0.), Capabilities list (eg. The device can act as a sourcr route bridge as well as a router), Platform (eg. Cisco 2600).

34 CDP (Cisco’s Discovery Protocol)

35

36 Using CDP Router# sh cdp neighbor (shows neighboring devices)
Router# sh cdp entry (shows detailed information about this perticular neighbor.) Router# sh cdp interface(shows the details of the interface of the local decive.) Router# sh cdp traffic (shows the packet sent, received, lost etc.) To disable CDP…., Router(config)#no cdp run Router(config)#int s0 Router(config-if)#no cdp enable

37 Backup & Restoring Routers IOS Image
Using TFTP (Trivial File Transfer Protocol) TFTP Server allows you to take backup, upload and save your IOS Image and current configuration on it. TFTP is a software program of 1.3Mb. This should be installed on that TFTP server i.e., (Personnel Computer). C:\Program files\cisco systems\cisco TFTP * Note: Always while taking Backup or Restoration TFTP software should execute on that particular computer.

38 Backup Sources : Through Telnet Session. Through Console Session.
Through Auxillary Port (Remote Session)

39 Backup of Configuration
Backup of IOS Image Router#Copy Flash:(Press Tab key) Tftp Address or name of the remote host [ ]? (Ip address of tftp) Destination file name [ ] ? (Press enter key or a name) Backup of Configuration Router#Copy Startup-config Tftp Address or name of the remote host [ ]? (Ip address of tftp) Destination file name [ ] ? (Give a name)

40 Upgrading IOS Image Note: This process can only be done by Console Session. Router#Copy tftp Flash: Address or name of remote host []? Source file name []? Destination file name []? Erase Flash: before copying [confirm]? Erasing the Flash file system will remove all files: continue? [confirm] Erasing device eeeeeeee……….eeeeeee.eee.eeee.ee Loading!!!!!!!!!!!!!!!!!!!!!!!!!!!!!…….!!!!…….!!!!!!

41 Leased line WAN Setup Case 1: The distance between the locations is greater than 5 Km. Requirements A pair of Routers, Leased line, pair of leased line modems V.35, Pair of G.703 Modem. Case 2: The distance between the two locations is less than 5Km. A pair of Routers, Leased line and pair of leased line modem.

42 Leased line Setup( > 5km)
V.35 modem V.35 modem V.35 Cable G.703 G.703 Csu/ Dsu Mux/ Mux/ Dmux S0 Dmux Csu – channel service unit S0 Dsu – data service unit E0 E0 S0 – Serial port of router E0 – Ethernet port of a router Router Switch/hub Switch/hub Internal Network Internal Network

43 Leased line Setup (< 5 km)
V.35 modem Leased line V.35 modem V.35 Cable Csu/ Dsu S0 S0 E0 E0 Telephone Exchange Router Switch/hub Switch/hub Internal Network Internal Network

44 Routing Routing is of three types. Static Dynamic and Default
When the destination is known, static and dynamic routing is done. For unknown destinations, default routing is employed. In dynamic routing, the path is fixed by the protocol. The paths will be changing depending on the length of the path. Always the shortest path is preferred. Static routing is done by the users. These paths are stored in the routing table.

45 Example: /8 /8 S 0 S 0 E 0 /24 E 0 /24 Switch/hub Switch/hub /24 /24 Location A Location B

46 Router(config)# ip routing
Router# sh ip route (it shows all the directly connected networks). “ C /24 directly connected to E0” “ C /8 “ ‘ ‘ ‘ S0” “ C “ indicates connected networks. Static Routing Syntax Router(config)# ip route (dest-network) (subnet mask) (next hop address)

47 Location A Router(config)# ip routing Router(config)# ip route Note* if we don’t know the address of next hop, we can just write the name of the hop. Router(config)# ip route S0 Location B Router(config)# ip route

48 Router# sh ip route C /24 directly connected to E0 C /8 “ ‘ “ “ S0 S /24 [1/0] via “S” represents static. [a/b] ~ [1/0], here a=1 is the administrative distance value and b has no significance in static routing. For static and default routing b can be 0 or 1. lesser the administrative distance value, higher the preference.

49 “Tracert”, “Trace Route” and “Route print”.
C:\> tracert C:\> route print Router# trace route (gives the complete route) Router# sh arp (to check MAC addresses) Default Routing Router(config)# ip routing Router(config)#ip route DA (S/N mask next) (next hop address) Router(config)# ip route s1

50 Dynamic Routing Router# sh ip route
C /24 directly connected to E0 C / “ “ to S0 S* / “ “ to S0 Dynamic Routing It is a type of routing where routing protocols( eg. RIP and IGRP) are used between routers to determine the path and maintain routing table. Once the path is determined a router can route a routed protocol(IP). Dynamic routing uses broad casts and multicasts to communicate with other routers. The routing metric helps routers find the best path to each network.

51 Classification Of Routing Protocols
Distance Vector Hybrid Routing Link State Distance Vector: the distance vector approach determines the direction and the distance to any link in the internetwork. When the topology in a distance vector routing protocol changes, routing table updates in the router must occur. This update process proceeds step-by-step router to router. Eg. RIP and IGRP. Link State : it recreates the exact topology of the entire network(atleast the partion of the network where the router is situated). Eg . OSPF.

52 Functions of a distance vector routing protocol.
Hybrid Routing : it combines aspects of the link state and the distance vector algorithm. Functions of a distance vector routing protocol. Identification of source of information Discovering routes Select the best route Maintain Route information

53 Enabling RIP Configuration
Note: Maximum 6 paths (Default 4). “Hop count metric” selects the path Route updates are broadcast for every 30 seconds. Router(config)# router rip Router(config-router)# network (network ip) Router# sh ip protocol (shows the current routing protocol) Router# sh ip route

54 E0 S2 S3 E0 S2 S3 Router rip Network Network Router rip Network Router rip Network Network

55 Autonomous Systems An autonomous system is a collection of networks under a common administrative domain. IGPs operate within an autonomous system where as EGP connects different autonomous systems. Every autonomous system has a distinct number.The Internet Assigned Numbers Authority (IANA) is responsible for allocating this number. Eg. Autonomous system 100. We can use any number unless the organization plans for an EGP.

56 Configuring IGRP Syntaxes.
Router(config)#router igrp autonomous number This defines IGRP as the routing protocol. Router(config-router)#Network network-ip Selects directly connected networks. Router(config-router)#variance multiplier Configures unequal-cost load balancing by defining difference between the best metric and the worst acceptable metric. Router(config-router)#traffic-share (balanced/ min)

57 Autonomous System 100 E0 S2 S3 E0 S2 S3 Router igrp 100 Network Network Router igrp 100 Network Router igrp 100 Network Network

58 IP Classless Command Router(config)# ip classless
A router by default assumes that all the subnets of a directly connected network should be present in the routing table. If a packet is received with a destination address, of an unknown subnet of directly attached network, the router assumes that the subnet does not exists and drops the packet. This happens even if routing table has a default route.For the above condition if IP Classless is configured, and if any packet is received, then the router will match it to the default route and forword it to the next hop specified by the default route.

59 EIGRP

60 Calculation of Wildcard Mask
WCM = BCM-SNM /24 /27

61 OSPF OSPF(Open Short Path First) is of two types : 1) Single Area OSPF and 2) Multi Area OSPF. Area0 S 0 Area2 S 0 IR ABR ABR Internal Routers IR Area Border Router Area1

62 OSPF under Single Area Router A Router B S 0 192.168.1.194/252
/ /

63 (Config)# ip routing (Config-Router)# router OSPF 6573 (Config-Router)# network area 1 (Config-Router)# area 1 range (Config-Router)# network area 1 (Config-Router)# area 1 range

64 Configuration of Router B --------------------------------
(Config)# ip routing (Config-Router)# router OSPF 6573 (Config-Router)# network area 1 (Config-Router)# area 1 range (Config-Router)# network area 1 (Config-Router)# area 1 range

65 OSPF under Different Areas
Router A Router B E0 E0 1.50 5.50

66 Configuration of Router A --------------------------------
(Config)# ip routing (Config-Router)# router OSPF 6573 (Config-Router)# network area 1 (Config-Router)# area 1 range (Config-Router)# network area 0 (Config-Router)# area 0 range

67 Configuration of Router B --------------------------------
(Config)# ip routing (Config-Router)# router OSPF 6573 (Config-Router)# network area 2 (Config-Router)# area 2 range (Config-Router)# network area 0 (Config-Router)# area 0 range

68 Access Control List ACL
It is also called Network Traffic Control Management (NTCM). We can provide restrictions to individual users, subnets and services etc. ACL Extended ACL Standard ACL Any access list is identified by its number. S. A. L – 99 Ex. A. L

69 Rules for creating and implementing Access List
Access list must begin with the Deny Statements (If exists) then Permit Statements must follow. There must be at least one Permit Statement as an Implicit “Deny All” always exists. While Implementation of Access list, There must be only one Access list per Interface, per direction and per protocol.

70 Standard Access List S 0 172.16.1.1 172.16.1.2 S 0 E 0 5.50 E 0 1.50
Router B Router A E E 5.4 5.1 1.4 1.1 5.3 5.2 1.3 1.2 Syntax Router(config)# Access-list ALNO P/D Src Src-WCM Router(config)# Int <name of interface> Router(Config-if)#Ip Access-Group <Direction>

71 Configuration Standard Access-list For
Router A Restricting particular user (Config)# Access-list 1 deny (Config)# Access-list 1 permit or Access-list 1 permit any Restricting a Network (Config)# Access-list 1 deny (Config)# Access-list 1 permit any

72 Extended Access List Router B Router A S 0 172.16.1.1 172.16.1.2 S 0
1.4 1.1 5.4 5.1 1.3 1.2 5.3 5.2 1.20

73 Implementation Configuration of Router A (Config)#int E0
(Config)# Access-list 101 deny TCP eq FTP (Config)# Access-list 101 permit IP any any Implementation (Config)#int E0 (config-if)# IP Access-group 101 Out

74

75 NAT(Network Address Translation)
Router B Router A E E 1.4 1.1 5.4 5.1 1.2 5.3 5.2 Note : is denied from entering the network of 5.0.So it will enter with mask.

76 Configuration of Router A --------------------------------
# Config t (Config)# int E 0 (Config-if)# ip address (Config-if)# no shut (Config-if)# exit (Config)# int S 0 (Config-if)# ip address (Config-if)# clock rate 56000 (Config-if)# bandwidth 64 (Config)# ip routing (Config-Router)# ip route (Config-if)# ip nat inside

77 Configuration of Router B --------------------------------
(Config)# int S 0 (Config-if)# ip nat outside (Config)# access-list 1 permit (Config)# ip nat inside source list 1 int S 0 overload Configuration of Router B # Config t (Config)# int E 0 (Config-if)# ip address (Config-if)# no shut (Config-if)# exit (Config)# int S 0 (Config-if)# ip address (Config-if)# clock rate 56000 (Config-if)# bandwidth 64

78 Note : Only Public IP can go to the Internetworking world.
(Config)# ip routing (Config-Router)# ip route (Config)# access-list 10 deny (Config)# access-list 10 permit any (Config)# int E 0 (Config-if)# ip access-group 10 out Note : Only Public IP can go to the Internetworking world.

79 A Scenario of providing Net access to the IP's of Router B
Routing 1.50 Router A Router B 5.50 5.0 Routing Switch Leased line Natting

80 Configuration of Router A --------------------------------
# Config t (Config)# int E 0 (Config-if)# ip address (Config-if)# no shut (Config-if)# exit (Config)# int S 0 (Config-if)# ip address (Config-if)# clock rate 56000(for DCE) (Config-if)# bandwidth 64 (Config)# ip routing (Config-Router)# ip route

81 Configuration of Router B --------------------------------
(Config)# int E 0 (Config-if)# ip nat outside (Config-if)# no shut (Config-if)# exit (Config)# int S 0 (Config-if)# ip nat inside ((Config-if)# exit (Config)# access-list 10 permit (Config)# ip nat inside source list 10 int E 0 overload Configuration of Router B # Config t (Config)# int E 0 (Config-if)# ip address (Config-if)# no shut (Config-if)# exit

82 (Config)# int S 0 (Config-if)# ip address (Config-if)# clock rate 56000 (Config-if)# bandwidth 64 (Config-if)# no shut (Config-if)# exit (Config)# int E 0 (Config-if)# ip nat inside (Config-if)# ip nat outside (Config)# ip routing (Config-Router)# ip route (Config)# access-list 10 permit (Config)# ip nat inside source list 10 int E 0 overload

83 PPP(Point-to-Point) using PAP protocol
Internet based leased line S S 0 Router B (Zoom) Router A (ISDN) E E 1.4 1.1 5.4 5.1 1.3 1.2 5.3 5.2 NOTE : Passwords of both should be same.

84 Configuration of Router A --------------------------------
# Config t (Config)# int E 0 (Config-if)# ip address (Config-if)# no shut (Config-if)# exit (Config)# int S 0 (Config-if)# ip address (Config-if)# clock rate 56000(for DCE) (Config-if)# bandwidth 64 (Config)# ip routing (Config-Router)# ip route (Config-if)# encapsulation ppp (Config-if)# ppp authentication PAP (Config-if)# ppp PAP sent-username zoom password cisco

85 Configuration of Router B --------------------------------
# Config t (Config)# int E 0 (Config-if)# ip address (Config-if)# no shut (Config-if)# exit (Config)# int S 0 (Config-if)# ip address (Config-if)# clock rate 56000(for DCE) (Config-if)# bandwidth 64 (Config)# ip routing (Config-Router)# ip route (Config-if)# encapsulation ppp (Config-if)# ppp authentication PAP (Config-if)# ppp PAP sent-username ISP password cisco

86 PPP(Point-to-Point) using CHAP protocol
Internet based leased line S S 0 Router B (Zoom) Router A (ISDN) E E 1.4 1.1 5.4 5.1 1.3 1.2 5.3 5.2 NOTE : Passwords of both should be same.

87 Configuration of Router A --------------------------------
# Config t (Config)# int E 0 (Config-if)# ip address (Config-if)# no shut (Config-if)# exit (Config)# int S 0 (Config-if)# ip address (Config-if)# clock rate 56000(for DCE) (Config-if)# bandwidth 64 (Config)# ip routing (Config-Router)# ip route (Config-if)# encapsulation ppp (Config-if)# ppp authentication CHAP (Config-if)# ppp CHAP hostname zoom (Config-if)# ppp CHAP password cisco

88 Configuration of Router B --------------------------------
# Config t (Config)# int E 0 (Config-if)# ip address (Config-if)# no shut (Config-if)# exit (Config)# int S 0 (Config-if)# ip address (Config-if)# clock rate 56000(for DCE) (Config-if)# bandwidth 64 (Config)# ip routing (Config-Router)# ip route (Config-if)# encapsulation ppp (Config-if)# ppp authentication CHAP (Config-if)# ppp CHAP hostname ISP (Config-if)# ppp CHAP password cisco

89 DDR(Dial on Demand Routing)
ISP S S 0 Router B Router A E E 1.4 1.1 5.4 5.1 1.3 1.2 5.3 5.2

90 # Config t (Config)# isdn switch-type basic-net 3 (Config)# int E 0/1 (Config-if)# ip address (Config-if)# no shut (Config-if)# exit (Config)# int Bri 1/0 (Config-if)# no ip address (Config-if)# encapsulation ppp (Config-if)# no cdp enable (Config)# int dialer 1 (Config-if)# ip address negotiated (Config-if)# ppp authentication CHAP PAP callin (Config-if)# ppp CHAP hostname (Config-if)# ppp CHAP password password

91 (Config-if)# ppp PAP sent-username unicomin@hd2 password password
(Config-if)# dialer in-band (Config-if)# dialer string (Config-if)# dialer idle-time out 180 (Config-if)# dialer hold-queue 10 (Config-if)# exit (Config)# access-list 1 permit (Config)# dialer-list 1 protocol ip permit ((Config)# int bri 1/0 (Config-if)# dialer rotary-group 1 (Config-if)# no shut (Config)# int dialer 1 (Config-if)# dialer-group 1 (Config)# ip routing (Config-router)# ip route dialer 1 2

92 (Config)# ip name-server 202.54.30.2
(Config)# int E 0 (Config-if)# ip nat inside (Config-if)# no shut (Config-if)# exit (Config)# int Bri 1/0 (Config-if)# ip nat outside (Config)# int dialer 1 (Config)# ip nat inside source list 1 int dialer 1 overload

93 Backup Interface for a Leased Line
ISP S S 0 Bri 0 CPE/DTE ISP E E 1.4 1.1 5.4 5.1 1.3 1.2 5.3 5.2 CPE -Customer Premises Equipment DTE -Data Communications & Circutary end

94 # Config t (Config)# isdn switch-type basic-net 3 (Config)# int E 0/1 (Config-if)# ip address (Config-if)# no shut (Config-if)# exit (Config)# int S 0 (Config-if)# ip address (Config)# int Bri 1/ 0 (Config-if)# no ip address (Config-if)# encapsulation ppp (Config-if)# no cdp enable

95 (Config)# int dialer 1 (Config-if)# ip address negotiated (Config-if)# encapsulation ppp (Config-if)# no cdp enable (Config-if)# ppp authentication CHAP PAP callin (Config-if)# ppp CHAP hostname zoom (Config-if)# ppp CHAP password cisco (Config-if)# ppp PAP sent-username isp password cisco (Config-if)# dialer in-band (Config-if)# dialer string (Config-if)# dialer ideal-time out 180 (Config-if)# dialer hold-queue 10 (Config-if)# exit (Config)# access-list 1 permit (Config)# dialer-list 1 protocol ip permit ((Config)# int bri 1/ 0 (Config-if)# dialer rotary-group 1 (Config-if)# no shut

96 (Config)# int dialer 1 (Config-if)# dialer-group 1 (Config-if)# exit (Config)# ip routing (Config-router)# ip route S 0 (Config-router)# ip route dialer 1 2 (Config)# ip name-server (Config)# ip name-server (Config)# int E 0 (Config-if)# ip nat inside (Config-if)# no shut (Config-if)# exit (Config)# int Bri 1/ 0 (Config-if)# ip nat outside

97 (Config)# int dialer 1 (Config-if)# ip nat outside (Config-if)# exit (Config)# Access-list 2 permit 4 public 10 (Config)# ip nat inside source list 2 int dialer 1 overload (Config)# int S 0 (Config-if)# backup interface bri 1/0 (Config-if)# backup delay 30 60

98 Frame Relay Point - to - Point frame-relay Network Router B Router A
S S 0 Dlci 101 Router B Router A Dlci 102 PVC Fr-Switch Fr-Switch E E 1.4 1.1 5.4 5.1 1.3 1.2 5.3 5.2

99 Config t (Config)# int S 0 (Config-if)# no ip address (Config-if)# encapsulation frame-relay (Config-if)# no shut (Config-if)# exit (Config)# int S 0.1 point-to-point (Config-if)# bandwidth 64 (Config-if)# ip address (Config-if)# frame-relay interface DLC1 102 (or) (Config-if)# frame-relay map ip broadcast (Config)# ip routing (Config)# ip route

100 Point - to - Multi Point D A C B 4.0 10.0.0.1 1.0 10.0.0.4 10.0.0.2
3.0 103 104 102 A C 101 B 2.0

101 Configuration of Router A --------------------------------
Config t (Config)# int S 0 (Config-if)# no ip address (Config-if)# encapsulation frame-relay (Config-if)# no shut (Config-if)# exit (Config)# int S 0.1 multipoint (Config-if)# bandwidth 64 (Config-if)# ip address (Config-if)# frame-relay map ip broadcast (Config-if)# frame-relay map ip broadcast (Config-if)# frame-relay map ip broadcast (Config)# ip routing (Config)# ip route (Config)# ip route (Config)# ip route

102 Point-to-Point - Point-to-Point
4.0 1.0 3.0 103 104 102 101 2.0

103 Configuration of Router A --------------------------------
Config t (Config)# int S 0 (Config-if)# no ip address (Config-if)# encapsulation frame-relay (Config-if)# no shut (Config-if)# exit (Config)# int S 0.1 point-to-point (Config-if)# bandwidth 64 (Config-if)# clockrate 56000 (Config-if)# ip address (Config-if)# frame-relay map ip broadcast

104 (Config)# int S 0.2 point-to-point
(Config-if)# ip address (Config-if)# no shut (Config-if)# bandwidth 64 (Config-if)# clock rate 56000 (Config-if)# frame-relay map ip broadcast (Config-if)# exit (Config)# int S 0.3 point-to-point (Config-if)# clockrate 56000 (Config-if)# ip address (Config-if)# frame-relay map ip broadcast (Config)# ip routing (Config)# ip route

105 Iso International organization for standardization Iso has designed a reference model called osi reference model (open system interconnection). It has 7 layers. It says that Any n/w for comunication needs 7 layers Application layer The user uses application layer to send the data. The protocols @ this layer are ftp,http,smtp( ) telenet etc. Presentation layer Presentation layer takes the data from application layer and present In different formats for securing reason. The services This layer are Compression – decompression Coding – decoding Encryption - decryption

106 3. Session layer Establishing the session or the conectivity n/w n/w 1 & n/w 2 is done By the session layer. It 1. Establishes a session 2. maintains it & 3. Terminates it b/w the application 4. Transport layer End-end connectivity during a session b/w two application is done By the transport layer. It also decides the type of connection like tcp or udp i.e. connection oriented or connection less. Services: Sequencing Flow ctrl, error detection & correction Transport layer info + data is called segment.

107 5. Netwrok layer Logical addressing is done at thenetwork layer i.e. source address & destination address are attached to the data. layer Routed protocols routing protocols Eg: ip,ipx eg: rip,igrp,ospf Routed protocols: they always carry the data along with them Routing protocol: they identify the path for routed protocol to carry the data At this layer routers & layer 3 switches forms packets.

108 Data link layer MAC LLC Media access control logical link control framing of data Ip address is lik the pincode & MAC address is like house number. Here layer2 switches are used. Wab protocols used at this layer are PPP,HDLC,FP,X.25 etc. Here error checking CRC bits are added to the packets DLL info+ packets --> frames

109 7 physical layer Takes care of physical connectivity i.e connector,cable etc. here Frames are converted to bits (1’s & 0’s). The devices like hubs, repeaters,cables & connectors are used at this layer. I P Addressing Now a days ip ver4 is followed. It is a 32-bit addressing scheme. 32bits are divided into 4 octets of 8 bits each. i.e i.e (1’s & 0’s)-(1’s & 0s)-(1’s & 0’s)-(1’s & 0’s). (binary format). The ip address is maximum of 255 & min of 0. In future ip ver 6 is expected. It is 128 bit scheme. Ip adresses are clsassified into different classes.

110 Class A Class B Class C Class D Class E M.S.O Most Significant Ocate considering MSO

111 Through out class A, the MSB ‘0’ is constant in class B the
Msbs are ‘101’ constant through out. Class D & E are not used for internetworking class D is used for Multicast network. “ E “ “ “ research. class A should not be assigned for any divice is reserved for loopback ” usually reserved for loopback

112 Hence 0 & 127 cannot be used for adressing so actual range will be
1 to 126. All ip addresses are divided into two. 1.network I.d 2.host I.d in class a address there is 1n\w I.d postion & 3 host I.d postion I,e N-H-H-H.. Class A N-H-H-H Class B N-N-H-H Class C N-N-N-H Network Ids are represented by 1s & host ids are by 0s.

113 Types of ip adresses IP address public ip address private ip address Public network: the public address is defined with routing over the Internet it is given by I.S.P & routing table is created on the internet. Private network: for internal network I,e intranet, all the ip addresses Are governed by a body called INTERNIC. If we are a part of asia Pacefic then it is governed by APNIC. We can run our private network with any ip addresses of our choice But it should not be connected to internet.

114 Range of addresses for private network
Class A to Class B to Class C to Private ip addresses donot have routing. To meet the demand of no.of networks, the network is broken Into smaller networks called subnets. Eg: find no.of subnets, hosts/s.n subnet mask & valid ip addresses For a class c address. /24 ‘24’ shows the network bits 24= 3 octate position bits are enough, therefore no need to borrow Any bits from host position. =24 network & no host Default subet mask is & valid ip addresses are network

115 Switch An essential component of lan. Switches are of different types like Layer 2 layer 3, layer 4, layer 5….. Layer 2 switch : Switch hub Layer 2 layer 1 b.w is all ports b.w is shared Identifies source with MAC cannot identifiy the source Broad cast occur, till mac table alwaysbroad cast Is built Collision occur when both A&B Many collisions Wants to reach D. 1 broad cast domain 4 collision 1 broad cast domain 1 collision Domains domain

116 Switches Access layer Distribution layer Core layer Access layer swithc: catalyst 1912 Catalyst – manufacturer, but it is now owned by cisco. 12 port switch

117 Switch standard edition enterprise edition To configure VLANS,go for enterprose edition as standard edition Will not support VLAN. For uplinking or cascading 100mbps is minimum required. Functions of switch Adress learning Filter & forwarding Loop avoidance Address learning Booting 1.blocking state (15 secs) 2.Listening state (15 secs) 3.Learning stage (20 secs) 4.Forwarding stage (20 secs)

118 The switch will always learn the MAC address from the source itself
The source should atleast communicate once to learn the MAC address. 2. Filter & forwarding : store & forward cut through fragment free On access layer the default is fragment free we can change to any Of the3 mentioned above. 1.store & forward: it stores the whole information (1500 bytes Ethernet) into buffer, then checks for errors, looks for destination In MAC table and then forward. 2. Cut through: no error checking.as soon as a packet arrives It looks into MAC table & forward.

119 3.loop avridance: consider a seenario whr pci wants to communicate
To pc2. Switch a makes entry of pc1 in its MAC table as it is a new Switch. This looping is before the mac table I s made. This is called Initial flood or broad cast storm. STP: spanning tree protocol. To avoid loops in case of a cascaded Switch stp is enabled by default. Parameters to select a switch Bridge priority (32768) default.( ) MAC address Bridge id is calculated. Bridge id=bridge priority + mac address. Which ever the switch having least bridge ID will be elcted as root Bridge and others are non-root bridge. On root bridge the ports used For cascading are called designated ports. All the designated ports Will be at forwadingf state . In non root bridge from the two ports one will be selected as root port. This will be depending on the cost speed).least cost path (faster transmission) the other port will be blocked.

120 The “hello” packets that are sent by root bridge for every 2 sec to inform
that it is working properly are called BPDUS; (bridge protocol data limits). If non root bridge do no receive 10 BPDUs for next 20secs then it is clear that the root bridge has Failed. 20secs – max age time Then a new root bridge is selected. In the above eg:if switch A is selected as root bridge and ports A & B Of switch A are designated ports. Depending on the shortest paths For high speed & low cost one port of switch B is selected as root port & the other will be blocked.

121 ISDN Integreted services digital network. It is a circuit switching technology approved by CCITT. ISDN PSTN Digital analog More bandwidth less Multiple services like, Voice,data,video etc. BRI PRI (Basic rate interface 2b channels & id chennel) european standard north american standard 30 bchannels bchannels & & id channel id channel

122 ‘B’channel – it is a bearer channel for data.
‘D’channel – it is a delta channel for synchronization In bri each B channel = 64 kbps d channel = 16kbps Max 128 kbps BW in isdn In PRI both B & D channels _= 64kbps. European – 2mbps North american – 1.54 mbps ISDN will have a voltage of v

123 ss7 SPID number : (service profile identifier) to identify the link.
Types of ISDN switches Euro-basic net3 U.S-basic 5 ess-at&t standard U.K-basic net3 & basic net5 France-vn3 & vn4 Ss7 (signalling system7) Will be configured at the back bone side. telco vn3/vn basic net3 France India ss7

124 E-series, I-series & Q-series
E-tells about telephone network & ISDN network I-tells about concepts & interfaces of ISDN Q-tells about signalling & switching of ISDN DDR Dail on Demand Routing The main feature of ISDN is it dials & connects on request & Discounects when no data transfer is taking place. nat (network address translation IP NAT inside IP NAT out side overload

125 IPNAT inside: any request from th internal network will be NATED
To public Ip address sending the request from internal network To Bri interface is overloading. When ever NAT is enable, the router will maintain a nat table. Nat table: When nat t able is enabled nau request will be allocated a port Number after Above 1024 port numbers are reserved for other Services. This allocation of port numbers is dynamic.

126 Configuring a DDR for ISDN
Config#int e0 Config#ip adress Config#ip nat inside Config#exit Config-if#int bri 0 Config-if#ip address negotiated Config-if#encapsulation PPP Config-if#PPP authenticaiton PAP chap collin Config-if#PPP chap hostname (username) Config-if#PPP chap password (password) Config-if#dialer string (tel.no.) Config-if#dialer idle timeout (time in secs) Config-if#dialer group Config-if#ip nat outside Config-if#exit

127 Ip address negotialted : this is when an ip adress is fetched kdynamically
From ISP 7 donot have a permanent public I.P adress Dialer – list range 1-10 to configure router as a DHCP server Config#ip pool <name> staring ip end ip. Some ISDN command Sh int bri0 Sh isdn status (layer 1 should be active. If not physical conectivity is lost) Sh isdn active Sh isdn history Sh ip network translaiton


Download ppt "Cisco Routers."

Similar presentations


Ads by Google