Presentation is loading. Please wait.

Presentation is loading. Please wait.

AvH Senior Research Grant + Feodor Lynen Chist-Era DIQIP EU IP SIQS

Similar presentations


Presentation on theme: "AvH Senior Research Grant + Feodor Lynen Chist-Era DIQIP EU IP SIQS"— Presentation transcript:

1 AvH Senior Research Grant + Feodor Lynen Chist-Era DIQIP EU IP SIQS Advanced ERC Grant: QUAGATUA Advanced ERC Grant: OSYRIS SGR 874 EU FET-Proactive QUIC Report from the Frontiers of Atomic, Molecular and Optical Physics and Quantum Information FNP Polish Science Foundation NCN Narodowe Centrum Nauki EU STREP EQuaM John Templeton Foundation FOQUS

2 ICFO – Quantum Optics Theory
Postdocs ICFO: Alessio Celi (LGT, Gen. Rel.) Tobias Grass (FQHE, Exact Diag.) Pietro Massignan (Fermions, Disorder) Miguel Angel García March (Gauge Fields) Michał Tomża (Quant-chemistry): Christian Gogolin (QI, D-wave computers) Shi-Ju Ran (TNS, many body) Jordi Tura (QI, many body) James Quach (many body) Alexis Chacón (Atto) Manab Bera (QI) Swapan Rana (QI) PhD ICFO: Samuel Mugel (QRandom Walks) Aniello Lampo (Open Systems) David Raventos (Gauge Fields) Emanuelle Tirito (TNS) Angelo Piga (TNS) Nils-Eric Gűnther Christos Charampoulos (Open Sys) Noslen Suárez (Atto) MPI Garching postdoc: Arnau Riera (Qthermo, Qdyn) Ex-members and collaborators: François Dubin (CNRS), G. John Lapeyre (CSIC), Luca Tagliacozzo (Stathclyde), Matthieu Alloing (Paris), Tomek Sowiński (IFPAN), Phillip Hauke (IQOQI), Omjyoti Dutta (UJ, Cracow), Christian Trefzger (Paris); Kuba Zakrzewski (UJ, Cracow), Mariusz Gajda (IF PAN), Boris Malomed (Haifa), Ulrich Ebling (Kyoto), Bruno Julia Díaz (UB), Christine Muschik (IQOQI), Marek Kuś, Remigiusz Augusiak (CFT), Julia Stasińska (IFPAN), Alexander Streltsov (FUB), Ravindra Chhajlany (UAM), Fernando Cucchietti (MareNostrum), Anna Sanpera (UAB), Veronica Ahufinger (UAB)

3 ICFO (www.icfo.eu) Created on paper 2002, first employees 2004
ICFO ( Created on paper 2002, first employees 2004 14000 m2 labs space 23 groups (19 experimental, 4 theory) Light for health, light for energy, light for information Biophotonics, Nanophotonics, Quantum Optics, Nonblinear Optics 11 ERC Grants (9 Grantees) 1565 papers, cits., H-index 73 6 Nature, 5 Science, 4 PNAS, 57 Nature Group, 172 PRL Our Director, Lluis Torner in his standard outfit

4 Quantum simulators Ultracold atoms in optical lattices: Simulating quantum many-body physics M. Lewenstein, A. Sanpera, V. Ahufinger, Oxford University Press (2012)

5 Lecture 1: Introduction to Quantum Information
AvH Senior Research Grant + Feodor Lynen Advanced ERC Grant: QUAGATUA Chist-Era DIQIP EU IP SIQS Lecture 1: Introduction to Quantum Information Polish Science Foundation EU STREP EQuaM Hamburg Theory Prize John Templeton Foundation Advanced ERC Grant: OSYRIS ICFO-Cellex-Severo Ochoa

6 1.1 Report from the Frontiers of QI - Outline
1.2 Entanglement theory: Bipartite states Entanglement criteria Positive maps Entanglement witnesses Entanglement measures 1.3. Entanglement in many body systems Computational complexity Entanglement of a generic state Area laws Tensor network states 1.4. Non-locality in many body systems Correlations – DIQIP approach CHSH Inequality and its violations Non-locality in many body systems Many body physics from a quantum information perspective R. Augusiak, F. M. Cucchietti, M. Lewenstein Lect. Notes Phys. 843, (2010). Ultracold atoms in optical lattices: Simulating quantum many-body systems M. Lewenstein, A. Sanpera, V. Ahufinger Oxford University Press (2012)

7 1.2.1 Entanglement Theory – Bipartite Pure States
Proof?

8 1.2.2 Entanglement Theory – Bipartite Mixed States

9 1.2.3 Entanglement Criteria

10 1.2.4 Entanglement Criteria – Partial Transposition

11 1.2.5 Entanglement Witnesses and Hahn-Banach Theorem

12 1.2.5 Entanglement Witnesses and Hahn-Banach Theorem

13 1.2.6 Positive Maps and the Entanglement Problem

14 1.2.6 Positive Maps and the Entanglement Problem
Proof?

15 1.2.7 Positive Maps and Entanglement Witnesses

16 1.2.7 Positive Maps and Entanglement Witnesses
Proof?

17 1.2.7 Entanglement Measures – Pure States

18 1.2.7 Entanglement Measures – Entanglement of Formation

19 1.2.7 Entanglement Measures – Concurrence

20 1.2.7 Entanglement Measures – Negativity/Logarithmic Negativity

21 1.3 Entanglement in Many Body Systems

22 1.3.1 Computational complexity
Classical simulators: What can be simulated classically? What is computationally hard (examples)? Ultracold atoms in optical lattices: Simulating quantum many-body physics, M. Lewenstein, A. Sanpera, V. Ahufinger, in print Oxford University Press (2012)

23 1.3.1 What can be simulated classically?
Quantum Monte Carlo Systematic perturbation theory Exact diagonalization Variational methods (mean field, MPS, PEPS MERA, TNS…)

24 1.3.1 What is computationally hard?
Fermionic models Frustrated systems Disordered systems Quantum dynamics

25 1.3.2 Why computations are hard? Entanglement of a generic state
Proof?

26 1.1.3 Why there are some hopes? - Area laws
Classical area laws Thermal area laws Quantum area laws in 1D Quantum area laws in 2D?

27 1.1.3 Area laws Area law: Reduced density matrix of a region R
scales as the size of the boundary of R.

28 1.1.3 Area laws for thermal states

29 1.1.3 Quantum area laws in 1D

30 1.3 Quantum area laws in 1D

31 ? One can prove generally S(ρA) ≤ |∂A| log(|∂A|)
1.3 Quantum area laws in 2D, 3D … One can prove generally S(ρA) ≤ |∂A| log(|∂A|) ?

32 1.3.4 TNS and quantum many-body systems
Many-body quantum systems are difficult to describe. We need coefficients to represent a state. To determine physical quantitites (expectation values) an exponential number of computations is required.

33 1.3.4 Definition of TNS (MPS in 1D)
GHZ states: where maps 1D states: as: where D-dimensional are maximally entangled states maps

34 Definition of TNS (MPS in 1D)
2D states: maps General:

35 Lecture 2: Introduction to Quantum Infomation Theory
AvH Senior Research Grant + Feodor Lynen Advanced ERC Grant: QUAGATUA Chist-Era DIQIP EU IP SIQS Lecture 2: Introduction to Quantum Infomation Theory Polish Science Foundation EU STREP EQuaM Hamburg Theory Prize John Templeton Foundation Advanced ERC Grant: OSYRIS ICFO-Cellex-Severo Ochoa

36 Detecting Non-Locality in Many Body Systems
AvH Senior Research Grant + Feodor Lynen Chist-Era DIQIP EU IP SIQS Advanced ERC Grant: QUAGATUA Advanced ERC Grant: OSYRIS SGR 874 EU FET-Proactive QUIC Detecting Non-Locality in Many Body Systems Solid State IFPAN FNP Polish Science Foundation NCN Narodowe Centrum Nauki EU STREP EQuaM John Templeton Foundation FOQUS

37 ICFO – Quantum Optics Theory
Postdocs ICFO: Alessio Celi (LGT, Gen. Rel.) Tobias Grass (FQHE, Exact Diag.) Pietro Massignan (Fermions, Disorder) Miguel Angel García March (Gauge Fields) Michał Tomża (Quant-chemistry): Christian Gogolin (QI, D-wave computers) Shi-Ju Ran (TNS, many body) Jordi Tura (QI, many body) James Quach (many body) Alexis Chacón (Atto) Manab Bera (QI) Swapan Rana (QI) PhD ICFO: Samuel Mugel (QRandom Walks) Aniello Lampo (Open Systems) David Raventos (Gauge Fields) Emanuelle Tirito (TNS) Angelo Piga (TNS) Nils-Eric Gűnther Christos Charampoulos (Open Sys) Noslen Suárez (Atto) MPI Garching postdoc: Arnau Riera (Qthermo, Qdyn) Ex-members and collaborators: François Dubin (CNRS), G. John Lapeyre (CSIC), Luca Tagliacozzo (Stathclyde), Matthieu Alloing (Paris), Tomek Sowiński (IFPAN), Phillip Hauke (IQOQI), Omjyoti Dutta (UJ, Cracow), Christian Trefzger (Paris); Kuba Zakrzewski (UJ, Cracow), Mariusz Gajda (IF PAN), Boris Malomed (Haifa), Ulrich Ebling (Kyoto), Bruno Julia Díaz (UB), Christine Muschik (IQOQI), Marek Kuś, Remigiusz Augusiak (CFT), Julia Stasińska (IFPAN), Alexander Streltsov (FUB), Ravindra Chhajlany (UAM), Fernando Cucchietti (MareNostrum), Anna Sanpera (UAB), Veronica Ahufinger (UAB)

38 Detecting non-locality in many body systems - Outline
0. Entanglement theory: 0.1 Bipartite pure states (Schmidt decomposition) 0.2 Bipartite mixed states 0.3 Entanglement criteria 0.4 Entanglement measures (entanglement entropy) 1. Entanglement in many body systems 1.1 Computational complexity 1.2 Entanglement of pure states (generic, and not…) 1.3 Area laws 1.4 Tensor network states 2. Non-locality in many body systems 2.1 Correlations – DIQIP approach 2.2 Non-locality in many body systems 2.3 Physical realizations with ultracold ions 2.4.Physical realizations with spin chains Many body physics from a quantum information perspective R. Augusiak, F. M. Cucchietti, M. Lewenstein Lect. Notes Phys. 843, (2010). Ultracold atoms in optical lattices: Simulating quantum many-body systems M. Lewenstein, A. Sanpera, V. Ahufinger Oxford University Press (2012)

39 Quantum simulators, precise measurements and ultracold matter
Ultracold atoms in optical lattices: Simulating quantum many-body physics M. Lewenstein, A. Sanpera, and V. Ahufinger, Oxford University Press (2012)

40 2. Non-locality in Many Body Systems

41 2. Non-locality in Many Body Systems
Courtesy of Ana Belén Sainz paris.pdf 2. Non-locality in Many Body Systems 2.1 Correlations – DIQIP approach 2.2 Non-locality in many body systems J. Tura, R. Augusiak, A.B. Sainz, T. Vértesi, M. Lewenstein, and A. Acín, Detecting the non-locality of quantum many body states, arXiv: , Science 344, 1256 (2014). J. Tura, A.B. Sainz, T. Vértesi, A. Acín, M. Lewenstein, R. Augusiak, Translationally invariant Bell inequalities with two-body correlators, arXiv: , J. Phys. A: Math. Theor (2014), special issue of J. Phys. A on “50 years of Bell’s Theorem”.

42

43

44

45

46

47

48

49 nm + n(n-1)m2/2

50

51

52

53

54 R. Schmied, J. -D. Bancal, B. Allard, M. Faddel, V. Scarani, P
R. Schmied, J.-D. Bancal, B. Allard, M. Faddel, V. Scarani, P. Treutlein, and N. Sangouard, Science 352, 6284, 441 (2016).

55

56

57

58 Ana Belén Sainz

59 2.3 Physical realizations with ultracold ions

60 2.3 Realizations with ultracold ions/atoms

61 2.3 Realizations with ultracold ions

62 2.3 Realizations with ultracold ions

63 2.3 Realizations with ultracold ions

64 Nonlocality in 1-D many-body Systems (spin chains)
J. Tura, G. de las Cuevas, R. Augusiak, M. Lewenstein, A. Acín, J. I. Cirac Nonlocality in 1-D many-body systems

65 Idea Start with a fermionic Hamiltonian
Exact diagonalization Transformation to a spin Hamiltonian Jordan-Wigner Transformation Assign a Bell inequality in a natural way - Quantum bound ↔ Ground state energy Translationally invariant. → Closed formulas. Nonlocality in 1-D many-body systems

66 Classical bound? Dynamic programming
Very versatile optimization technique Finding the optimal deterministic local strategy Already optimized Current step Possible influence to current step Still irrelevant measurements. Optimization at step . Translationally invariant → Exponentially faster Nonlocality in 1-D many-body systems

67 1.3 Non-locality in Many Body Systems
J. Tura, R. Augusiak, A.B. Sainz, T. Vértesi, M. Lewenstein, and A. Acín, Detecting the non-locality of quantum many body states, arXiv:   J. Tura, A.B. Sainz, T. Vértesi, A. Acín, M. Lewenstein, R. Augusiak, Translationally invariant Bell inequalities with two-body correlators, arXiv: , submitted to special issue of J. Phys. A on “50 years of Bell’s Theorem”. Courtesy of Ana Belén Sainz paris.pdf

68 Quantum simulators Ultracold atoms in optical lattices: Simulating quantum many-body physics M. Lewenstein, A. Sanpera, V. Ahufinger, Oxford University Press (2012)


Download ppt "AvH Senior Research Grant + Feodor Lynen Chist-Era DIQIP EU IP SIQS"

Similar presentations


Ads by Google