A new way of creating cellular polyurethane materials: NIPU foams

Similar presentations


Presentation on theme: "A new way of creating cellular polyurethane materials: NIPU foams"— Presentation transcript:

1 A new way of creating cellular polyurethane materials: NIPU foams
Adrien CORNILLE Ph.D Student New cyclocarbonates building blocks reagents to room temperature, environmentally friendly for adhesives and sealants polyurethanes UMR Institut de Chimie Moléculaire et des Matériaux de Montpellier Sylvain CAILLOL, Rémi AUVERGNE and Bernard BOUTEVIN UMR 5253 – CNRS, UM, ENSCM

2 Latest polyurethane developments
Polyurethane historical1,2,3 : 1937: Polyurethane’s discovery by Otto Bayer in Germany 2015 : Polyurethanes find applications in almost everything we touch: Dr. Otto Bayer (1937) Chairs Desks Beds Wall and roofing insulation Paints Glue Elastomers 1O. Bayer, Angewandte Chemie, 1947, 59, 2L. Shen, et. al., Report of Utrecht University commisioned by European Polysaccgaride Network of Excellence and European Bioplastics, Utrecht University, 2009 3 C, Boujard, et. al., Panorama du marché du polyuréthane et état de l’art de ses techniques de recyclages, Report 1202C0079, ADEME, 2009

3 Latest polyurethane developments
Polyurethane market panorama PU production in 2011 (kt) Example to illustrate this production Mousses rigides Polyurethanes is an integral part of a car : Flexible foams  car seats Rigid foams  motor insulation Coatings  paint Elastomers  timing belt Sealants  windshield sealants 6th polymer manufactured in the world C., Boujard, et. al., Panorama du marché du polyuréthane et état de l’art de ses techniques de recyclages, Report 1202C0079, ADEME, 2009

4 Latest polyurethane developments
PU Segmentation of European production in 2011 Flexible foams Rigid Foams Furniture and Bedding Car seats Sound insulation Insulating panels: Building Appliances In 2011, flexible and rigid foams presented 2/3 of European polyurethane production Raw material for polyurethane synthesis Polyols for the material soft segments Diisocyanates for rigid segments + + + H2O CO2 Excess In the next few years, diisocyanates will be removed from PU formulations C., Boujard, et. al., Panorama du marché du polyuréthane et état de l’art de ses techniques de recyclages, Report 1202C0079, ADEME, 2009

5 NIPU Synthesis and objective
Carbonate opening reaction with an amine: NIPU Only unexpanded PHU materials1,2,3 Never for foams Advantages: Drawbacks: Cyclic carbonates display low toward amines PHU materials display low molar mass No isocyanate use in PU formulations Hydroxy groups improve the stability of PHU by hydrogen bonding Objective: How NIPU material can be expanded to obtain an isocyanate-free polyurethane foam ? 1C. Carre, L. Bonnet, L. Averous, RSC Adv. 2014, 4, 2L. Maisonneuve, A.-L. Wirotius, C. Alfos, E. Grau, H. Cramail, Polym. Chem. 2014, 5,

6 Cyclic carbonate reactivity
Endo’s study: difference of reactivity between C5 and C61 C6 are more reactive than their similar C5: Total conversion of the C6 is reached in 80 hours of reaction C6 is difficult to access: low yield or use of phosgene or derivatives phosgene (ethyl chloroformate) A choice between C5 and C6 has to be made to find compromise between reactivity and precursors syntheses 1Endo, T. et al. J. Polym. Sci. Part A. Polym. Chem. 2001, 39, 2He, Y. et al. React. Funct. Polym. 2001, 71, 3Darensbourg, D.J., et al. Macromolecules, 2010, 43(14), 4Weilandt, K. D., et al Macromol. Chem. Phys., 1996, 197,

7 C5 syntheses Several ways of C5 syntheses are described in literature : Easy to handle Use greenhouse gas: CO2 A Zhao, F.; Peop. Rep. China B Aresta, M. et al. E. J. Supercrit. Fluids 2003, 25, 177 C Bhanage, B. M. et al. Green Chemistry 2003, 5, 429 D Tomita, H. et al. J. Pol. Sci. Part A: Pol. Chem. 2001, 39, 860 E Komura, H. et al. Bull. Chem. Soc. Jap. 1973, 46, 550 F Nishikubo, T. et al. Tetrahedron Lett. 1986, 27, 3741 G Weissermel, K. Industrial Organic Chemistry, 3rd Edition; Wiley-VCH, 1997

8 Epoxy carbonation Carbonates precursors
100% conversion (calculated by 1H NMR) 96% yield Long aliphatic chain  Brings the flexibility to materials Carbonate Epoxy Epoxy

9 Epoxy carbonation Carbonates precursors
100% conversion (calculated by 1H NMR) 94% yield Functionality of cyclocarbonate is 2.6  To crosslink the materials and offset the low molar masses of PHU Carbonate Carbonate Carbonate

10 Catalyst of carbonate/amine reaction
Increasing carbonate C5 reactivity: using catalytic system1 According to the time conversion curves, the TBD is the best catalyst 1R. H. Lambeth, T. J. Henderson: Organocatalytic synthesis of (poly)hydroxyurethanes from cyclic carbonates and amines, Polymer. 2013, 54,

11 Foaming of NIPU materials
Blowing agent for: PU: Formation of foams easily at room temperature Epoxy: 1) NaHCO3: Decomposition at high temperature (180°C)1 2) Reaction between amine and poly(siloxane) at room temperature to release H22 NIPU: No blowing agent described for NIPU foams therefore, by analogy with PU foams, we are used poly(siloxane) for foaming NIPU materials 1E. Mazzon, A. Habas-Ulloa, J.-P. Habas, Eur. Polym. J. 2015, 68, 2P. M. Stefani, A. T. Barchi, J. Sabugal, A. Vazquez, Journal of Applied Polymer Science. 2003, 90,

12 Carbonates precursors Amines precursors
NIPU foams precursors Carbonates precursors Amines precursors PRIAMINE 1073 Blowing agent Catalyst Cornille, A., et al, European Polymer Journal, 66, 2015,

13 NIPU foams formulations and characterizations
x TMP-Tri-C5 + y (PPO-Bis-C5) + 1,05 Amine + 0,05 MH ,05 TBD  NIPU Foams Δ Only amount of TMP-Tri-C5 and PPO-Bis-C5 and the structure of amine are different Amount of blowing agent and catalyst are the same TMP-Tri-C5/EDR-148 TMP-Tri-C5/PPO-Bis-C5/EDR-148 TMP-Tri-C5/PPO-Bis-C5/Priamine ρ= 300 kg.m-3 ρ= 250 kg.m-3 ρ= 200 kg.m-3 Aliphatic chain of PPO-Bis-C5 and Priamine increase the porosity and decrease the density compare to the foams with 100% TMP-Tri-C5 Cornille, A., et al, European Polymer Journal, 66, 2015,

14 3 regions for flexible foams:
NIPU foams mechanical characterization DMA: Stress vs. Strain  Determining the pressure to be applied to deform the foam Densification 3 regions for flexible foams: Linear elasticity: deformation of edge foam Plateau: deformation of cells foam Densification: crush of material after total crush of cells Plateau Linear Elasticity Syntheses of a range of foams with different rigidity: TMP-Tri-C5 cross-linker provides rigidity to foams Aliphatic chain provides flexibility to foams Cornille, A., et al, European Polymer Journal, 66, 2015,

15 NIPU foams mechanical characterization
DMA: NIPU foams resilience measurement  Time for the foam to return to its original state after compressed NIPU foams present total resilience in 80 seconds Cornille, A., et al, European Polymer Journal, 66, 2015,

16 NIPU foams thermal characterization
NIPU foams TGA and DSC analyzes TMP / EDR-148 0,5TMP / 0,5PPO / EDR-148 0,7TMP / 0,3PPO / Priamine DSC: Variation of Tg as function of: The crosslinker rate: Tg of 1st NIPU foam is higher The aliphatic chain percentage: 2nde foam display lower Tg compare to 3rd foam: decrease PPO-Bis-C5 rate 4th and 5th foams display lower Tg compare to 2nde and 3rd: using Priamine 1073 TGA: NIPU foams display similar thermal stability Cornille, A., et al, European Polymer Journal, 66, 2015,

17 Conclusion and Outlooks
PU foam synthesis NIPU foam synthesis Outlooks : Testing new blowing agent that do not release H2 NIPU foams formulation at room temperature Flame retardant addition within foam formulations Cornille, A., et al, European Polymer Journal, 66, 2015,

18 Thank you for your attention Do you have any questions ?
Acknowledgment Pr. Bernard Boutevin Pr. Dariusz Bogdal Dr. Sylvain Caillol Dr. Sylwia Dworakovska Thank you for your attention Do you have any questions ?


Download ppt "A new way of creating cellular polyurethane materials: NIPU foams"

Similar presentations


Ads by Google