Presentation is loading. Please wait.

Presentation is loading. Please wait.

Control Systems EE 4314 Lecture 12 March 17, 2015

Similar presentations


Presentation on theme: "Control Systems EE 4314 Lecture 12 March 17, 2015"β€” Presentation transcript:

1 Control Systems EE 4314 Lecture 12 March 17, 2015
Spring 2015 Indika Wijayasinghe

2 Chapter 4: A First Analysis of Feedback
Control: process of making a system variable converge to a reference value Tracking control (servo): reference value = changing Regulation control: reference value = constant (stabilization) Open-loop system Closed-loop system R: reference input, U: control input, W: disturbance, Y: output, V: sensor noise Controller 𝐷(𝑠) Plant G(𝑠) π‘Š 𝑅 π‘Œ π‘ˆ + Controller 𝐷(𝑠) Plant G(𝑠) π‘Š 𝑅 π‘Œ π‘ˆ 𝑉 βˆ’ +

3 Feedback Control Role of feedback:
Reduce sensitivity to system parameters (robustness) Disturbance rejection Track desired inputs with reduced steady state errors, overshoot, rise time, settling time (performance) Make system stable

4 Open-Loop System Output π‘Œ=𝐺𝐷𝑅+πΊπ‘Š
Control input U=𝐷𝑅 (Feedforward control input) Error E=π‘…βˆ’π‘Œ=π‘…βˆ’ 𝐺𝐷𝑅+πΊπ‘Š = 1βˆ’πΊπ· π‘…βˆ’πΊπ‘Š Transfer function 𝑇 π‘œπ‘π‘’π‘›_π‘™π‘œπ‘œπ‘ =𝐷𝐺 Can not reduce the effect of disturbance Controller 𝐷(𝑠) Plant G(𝑠) π‘Š 𝑅 π‘Œ π‘ˆ +

5 Closed-Loop System Output π‘Œ= 𝐺𝐷 1+𝐺𝐷 𝑅+ 𝐺 1+𝐺𝐷 π‘Šβˆ’ 𝐺𝐷 1+𝐺𝐷 𝑉
Error E=π‘…βˆ’π‘Œ=π‘…βˆ’ 𝐺𝐷 1+𝐺𝐷 𝑅+ 𝐺 1+𝐺𝐷 π‘Šβˆ’ 𝐺𝐷 1+𝐺𝐷 𝑉 = 1 1+𝐺𝐷 π‘…βˆ’ 𝐺 1+𝐺𝐷 π‘Š+ 𝐺𝐷 1+𝐺𝐷 𝑉 Transfer function 𝑇 π‘π‘™π‘œπ‘ π‘’π‘‘_π‘™π‘œπ‘œπ‘ = 𝐺𝐷 1+𝐺𝐷 Can not reduce the effect of noise Reduce the effect of disturbance if 𝐺𝐷 is large Controller 𝐷(𝑠) Plant G(𝑠) π‘Š 𝑅 π‘Œ π‘ˆ 𝑉 βˆ’ +

6 Stability: Open-Loop vs. Closed-Loop
The requirement for stability: all poles of the transfer function must be in the left half plane (LHP). Define 𝐺 𝑆 = 𝑏(𝑠) π‘Ž(𝑠) and D 𝑆 = 𝑐(𝑠) 𝑑(𝑠) , and π‘Ž 𝑠 , 𝑏 𝑠 , 𝑐 𝑠 , 𝑑 𝑠 are polynomials. For open-loop system Transfer function 𝑇 π‘œπ‘π‘’π‘›_π‘™π‘œπ‘œπ‘ =𝐷𝐺= 𝑏(𝑠)𝑐(𝑠) π‘Ž(𝑠)𝑑(𝑠) π‘Ž 𝑠 and 𝑑 𝑠 should have roots in the LHP. For closed-loop system Transfer function 𝑇 π‘π‘™π‘œπ‘ π‘’π‘‘_π‘™π‘œπ‘œπ‘ = 𝐺𝐷 1+𝐺𝐷 Characteristic equation 1+𝐺𝐷=0, π‘Ž 𝑠 𝑑 𝑠 +b s c s =0 Even for unstable π‘Ž 𝑠 , all poles can be in the LHP.

7 Stability: Open-Loop vs. Closed-Loop
Example: plant 𝐺 𝑆 = 1 (𝑠+1)(π‘ βˆ’1) , controller 𝐷(𝑆)= 𝐾(𝑠+𝛾) (𝑠+𝛿) Open-loop system Transfer function 𝐺 𝑆 𝐷(𝑆)= 𝐾(𝑠+𝛾) (𝑠+1)(π‘ βˆ’1)(𝑠+𝛿) Unstable because one pole (𝑠=1) is in the RHP. Closed-loop system Transfer function 𝐺𝐷 1+𝐺𝐷 = 𝐾(𝑠+𝛾) 𝑠+1 π‘ βˆ’1 𝑠+𝛿 +𝐾(𝑠+𝛾) Characteristic equation 𝑠+1 π‘ βˆ’1 𝑠+𝛿 +𝐾 𝑠+𝛾 =0 We can select Ξ΄, 𝛾, and 𝐾 so that all the poles are in the LHP. Closed-loop system can be stable by proper controller design even though open-loop system is unstable.

8 Regulation: Open-Loop vs. Closed-Loop
Regulation is to keep the error small when the reference is constant and disturbances are present. Open-loop system Error E= 1βˆ’πΊπ· π‘…βˆ’πΊπ‘Š Controller 𝐷 is useless for regulation. It does not reduce the effect of disturbance π‘Š. Closed-loop system Error E= 1 1+𝐺𝐷 π‘…βˆ’ 𝐺 1+𝐺𝐷 π‘Š+ 𝐺𝐷 1+𝐺𝐷 𝑉 Controller 𝐷 can be effective to reduce the effect of disturbance π‘Š, but is not effective to reduce the effect of noise 𝑉. Large 𝐷 makes 𝐺 1+𝐺𝐷 π‘Š smaller.

9 Sensitivity When plant 𝐺 changes to 𝐺+𝛿𝐺 Open-loop system
𝑇+𝛿𝑇= 𝐺+𝛿𝐺 𝐷 𝛿𝑇=𝛿𝐺𝐷 where 𝑇 : transfer function Closed-loop system 𝑇+𝛿𝑇= 𝐺+𝛿𝐺 𝐷 1+ 𝐺+𝛿𝐺 𝐷 β‰… 𝐺𝐷 1+𝐺𝐷 + 𝛿𝐺𝐷 1+𝐺𝐷 𝛿𝑇= 𝛿𝐺𝐷 1+𝐺𝐷 Sensitivity S= 1 1+𝐺𝐷 *Closed-loop system is less sensitive by a factor of 𝐺𝐷 compared to open-loop system.

10 Steady-State Error In the unity feedback system, error equation
𝐸=π‘…βˆ’π‘Œ=π‘…βˆ’ 𝐺𝐷 1+𝐺𝐷 𝑅= 1 1+𝐺𝐷 𝑅=𝑆𝑅 where 𝑆: sensitivity Let input π‘Ÿ 𝑑 = 𝑑 π‘˜ π‘˜! , which is 𝑅 𝑆 = 1 𝑠 π‘˜+1 For π‘˜=0, step input or position input For π‘˜=1, ramp input or velocity input For π‘˜=2, acceleration input Using Final Value Theorem lim π‘‘β†’βˆž 𝑒(𝑑) = 𝑒 𝑠𝑠 = lim 𝑠→0 𝑠 𝐸(𝑠) = lim 𝑠→0 𝑠 1 1+𝐺𝐷 𝑅(𝑠) = lim 𝑠→0 𝑠 1 1+𝐺𝐷 1 𝑠 π‘˜+1

11 Steady-State Errors Steady-state errors as a function of system type
Type Input Step (position) Ramp (velocity) Parabola (acceleration) Type 0 1 1+ 𝐾 𝑝 ο‚₯ Type 1 1 𝐾 𝑣 Type 2 1 𝐾 π‘Ž Position error constant 𝐾 𝑝 = lim 𝑠→0 𝐺 𝐷(𝑠) Velocity error constant 𝐾 𝑣 = lim 𝑠→0 𝑠𝐺 𝐷(𝑠) Acceleration error constant 𝐾 π‘Ž = lim 𝑠→0 𝑠 2 𝐺 𝐷(𝑠)

12 Steady-State Error Consider a system for which 𝐺𝐷 has no pole at the origin and a step input for which 𝑅 𝑆 =1/𝑠. Then, 𝑒 𝑠𝑠 = lim 𝑠→0 𝑠 1 1+𝐺𝐷 1 𝑠 = 𝐺𝐷(0) = 𝐾 𝑝 We define this system is Type 0 and 𝐾 𝑝 is β€œposition error constant.” Notice that if the polynomial input is higher than 1 degree (π‘˜β‰₯1, 1 𝑠 π‘˜+1 ), then steady-state error becomes infinity. A polynomial of degree 0 is the highest degree a system of Type 0 can track.

13 State-State Error Example: Determine the system type and relevant error for speed control with proportional control given by 𝐷 𝑆 = π‘˜ 𝑝 and plant transfer function 𝐺= 𝐴 πœπ‘ +1

14 State-State Error Example: Determine the system type and relevant error for speed control with proportional control given by 𝐷 𝑆 = π‘˜ 𝑝 and plant transfer function 𝐺= 𝐴 πœπ‘ +1

15 State-State Error Example: Determine the system type and relevant error for speed control with proportional and integral feedback given by 𝐷 𝑆 = π‘˜ 𝑝 + π‘˜ 𝐼 𝑠 and plant transfer function 𝐺= 𝐴 πœπ‘ +1

16 State-State Error Example: Determine the system type and relevant error for speed control with proportional and integral feedback given by 𝐷 𝑆 = π‘˜ 𝑝 + π‘˜ 𝐼 𝑠 and plant transfer function 𝐺= 𝐴 πœπ‘ +1

17 State-State Error For a feedback system with sensor gain 𝐻, Transfer function becomes 𝑇 𝑠 = π‘Œ(𝑠) 𝑅(𝑠) = 𝐺𝐷 1+𝐺𝐷𝐻 Error 𝐸=π‘…βˆ’π‘Œ=π‘…βˆ’π‘‡ 𝑠 𝑅= 1βˆ’π‘‡ 𝑠 𝑅 Applying the Final Value Theorem, 𝑒 𝑠𝑠 = lim π‘‘β†’βˆž 𝑒(𝑑) = lim 𝑠→0 𝑠 𝐸(𝑠) = lim 𝑠→0 𝑠 1βˆ’π‘‡ 𝑠 𝑅(s) For 𝑅 𝑆 = 1 𝑠 π‘˜+1 , 𝑒 𝑠𝑠 = lim 𝑠→0 1βˆ’π‘‡(𝑠) 𝑠 π‘˜ Controller 𝐷(𝑠) Plant G(𝑠) π‘Š 𝑅 π‘Œ π‘ˆ 𝑉 βˆ’ + Sensor H(𝑠)

18 State-State Error Example: Consider an electric motor control problem including a non-unity feedback system. System parameters are 𝐺 𝑠 = 1 𝑠(πœπ‘ +1) , 𝐷 𝑠 = π‘˜ 𝑝 , 𝐻 𝑠 =1+ π‘˜ 𝑑 𝑠 Determine the system type and relevant error constant. Controller 𝐷(𝑠) Plant G(𝑠) π‘Š 𝑅 π‘Œ π‘ˆ 𝑉 βˆ’ + Sensor H(𝑠)

19 State-State Error Example: Consider an electric motor control problem including a non-unity feedback system. System parameters are 𝐺 𝑠 = 1 𝑠(πœπ‘ +1) , 𝐷 𝑠 = π‘˜ 𝑝 , 𝐻 𝑠 =1+ π‘˜ 𝑑 𝑠 Determine the system type and relevant error constant. Answer: For 𝑅 𝑆 = 1 𝑠 π‘˜+1 , 𝑒 𝑠𝑠 = lim 𝑠→0 1βˆ’π‘‡(𝑠) 𝑠 π‘˜

20 Example Continue


Download ppt "Control Systems EE 4314 Lecture 12 March 17, 2015"

Similar presentations


Ads by Google