Presentation is loading. Please wait.

Presentation is loading. Please wait.

The Implementation of chronotonic similarity within an applet

Similar presentations


Presentation on theme: "The Implementation of chronotonic similarity within an applet"— Presentation transcript:

1 The Implementation of chronotonic similarity within an applet
Ludger Hofmann-Engl Development – Croydon Family Groups Axmedis 2008, Floerence, Italy, 17 – 19 November 2008

2 Traditional Notation of Rhythms (I) Basic note values
The absolute tempo is fixed as: MM (Mälzel 's Metronome) e.g.: G... = 60 means 60 quarter notes in a minute

3 Traditional Notation of Rhythms (II) Other note values and example 3
Note + dot = Note value + half note value e.g. G.... = G... + H (¼ + 1/8) Notes can be split into other ratios other than e.g. G... = H H H (triplets 1/12 each) Example: G... H H F H H G... G... F 3

4 Atomic Notation and c-chains
The rhythm: G... H H F H H G... G... F can be re-written using fractions. We get: ¼ 1/8 1/8 ½ 1/8 1/8 ¼ ¼ ½ The smallest fraction of this sequence is 1/8. Instead of 1/8 we write: [1](1/8) Instead of ¼ we write: [2, 2] (1/8) Instead of ½ we write: [4, 4, 4, 4] (1/8) Finally, we get the c-chain: c-chain = [2, 2; 1; 1; 4, 4, 4, 4; 1; 1; 2, 2; 2, 2; 4, 4, 4, 4](1/8)

5 Graphical Representation of a c-chain
Example: c-chain = [2, 2; 1; 1; 4, 4, 4, 4; 1; 1; 2, 2; 2, 2; 4, 4, 4, 4](1/8)

6 Representing 2 c-chains
and c-chain2 = [4, 4, 4, 4; 2, 2; 2, 2; 1; 1; 4, 4, 4, 4; 1; 1; 2, 2](1/8)

7 Tempo differences c-chain1 = [2, 2; 1; 1; 4, 4, 4, 4; 1; 1; 2, 2; 2, 2; 4, 4, 4, 4](1/8) and c-chain2 = [2, 2; 1; 1; 4, 4, 4, 4; 1; 1; 2, 2; 2, 2; 4, 4, 4, 4](1/2) with ln2(1/8 : ½) = ln2(1/2 : 1/8) = 1.92 we obtain the similarity factor (with 0.15 as an empirical constant): 𝐹 3 = 𝑒 −015∗1.92 =0.75 and generally: 𝐹 3 = 𝑒 −015∗ ln 2 𝑎 𝑏

8 Computing Chronotonic Distance
c-chain1 = [2, 2; 1; 1; 4, 4, 4, 4; 1; 1; 2, 2; 2, 2; 4, 4, 4, 4](1/8) and c-chain2 = [4, 4, 4, 4; 2, 2; 2, 2; 1; 1; 4, 4, 4, 4; 1; 1; 2, 2](1/8) computing the logarithmic distances at all points as: Computing Chronotonic Distance 𝑠 𝑖 =ln 𝑐 1i 𝑐 2i and inputed into: ∥ 𝐹 1 ∥= 𝑖=1 𝑛 𝑒 − 𝑘 1 𝑠 2 𝑖 𝑛 we get (k1 = 12.8): ∥ 𝐹 1 ∥=0.341

9 The functional applet is here
The GUI of the Applet The functional applet is here

10 Processing Tempo Similarity
for (int k = 0; k < i; k++) { SumV1 = SumV1 + v1[k]; } for (int k = 0; k < j; k++) SumV2 = SumV2 + v2[k]; v = 0.15 * Math.pow(Math.log(SumV1/SumV2),2); F3 = Math.pow(2.17, -v); F3 = Math.round(F3*10000); F3 = F3/10000;

11 Equalizing the Length of the c-chains
Before the chronotonic distance can be calculated the two chains need to be made possessing equal length. The relevant passage reads: if (SumV2 > SumV1) { L = SumV2/SumV1; for (int m = 0; m < i; m++) v1[m] = L*v1[m]; } if (SumV1 > SumV2) L = SumV1/SumV2; for (int m = 0; m < j; m++) v2[m] = L*v2[m];

12 Quasi Atomic Notation The relevant passage for chain c1 reads:
Instead of finding the lowest common factor in order to generate a c-chain based on an atomic interval, we set the quasi atomic interval k = 0.005 The relevant passage for chain c1 reads: for (int m = 0; m < i; m++) { for (double k= 0.005; k < v1[m] ; k+=0.005) al1++; a1[al1] = v1[m]; }

13 Computation of the Chronotonic Distance
The computation of the chronotonic distance is now trivial, and the passage reads: for (int m = 1; m < al1; m++) { T[m] = Math.log(a1[m]/a2[m])/Math.log(2); } for (int m = 1; m <al1; m++) o[m] = Math.pow(T[m],2); p[m] = Math.pow(2.17,(-12.8*o[m])); T1 = T1 + Math.pow(p[m],2); T1 = Math.sqrt(T1/al1); T1 = Math.round(T1*1000+1); T1 = T1/1000;

14 Chronotonic Similarity
where Sc is the chronotonic similarity, F3 the tempo similarity and ||F1|| the chronotonic distance. 𝑆 𝑐 = 𝐹 3 ∗∥ 𝐹 1 ∥

15 Applications of the Chronotonic Similarity
Integration into other applications (e.g. aural training) MIR – Search Engines Automated composer (producing variations) Musical Analysis Classification of Ethnomusicological Material

16 The Implementation of chronotonic similarity within an applet
Ludger Hofmann-Engl Development – Croydon Family Groups Axmedis 2008, Floerence, Italy, 17 – 19 November 2008


Download ppt "The Implementation of chronotonic similarity within an applet"

Similar presentations


Ads by Google