Presentation is loading. Please wait.

Presentation is loading. Please wait.

دکتر حسين بلندي- دکتر سید مجید اسما عیل زاده

Similar presentations


Presentation on theme: "دکتر حسين بلندي- دکتر سید مجید اسما عیل زاده"— Presentation transcript:

1 دکتر حسين بلندي- دکتر سید مجید اسما عیل زاده
بسم ا... الرحمن الرحيم سیستمهای کنترل خطی پاییز 1389 دکتر حسين بلندي- دکتر سید مجید اسما عیل زاده

2 The Nyquist-criterion
A method to investigate the stability of a system in terms of the open-loop frequency response. The argument principle(Cauchy’s theorem) Assume: Make : Note: si→ the zeros of the F(s), also the roots of the 1+G(s)H(s)=0

3 The argument principle
Now we consider the net phase shift if s travels 360o along a closed path Γ of the s-plane in the clockwise direction shown S-plane Im Re Similarly we have:

4 The argument principle
If Z zeros and P poles are enclosed by Γ , then: It is obvious that path Γ can not pass through any zeros si or poles pj . Then we have the argument principle: If a closed path Γ in the s-plane encircles Z zeros and P poles of F(s) and does not pass through any poles or zeros of F(s) , when s travels along the contour Γ in the clockwise direction, the corres- ponding F(s) locus mapped in the F(s)-plane will encircle the origin of the F(s) plane N = P-Z times in the counterclockwise direction, that is: N = P - Z

5 The argument principle
here: N —— number of the F(s) locus encircling the origin of the F(s)-plane in the counterclockwise direction. Z —— number of the zeros of the F(s) encircled by the path Γ in the s-plane. P—— number of the poles of the F(s) encircled by the path Nyquist criterion Re Im S-plane If we choose the closed path Γ so that the Γ encircles the entire right hand of the s-plane but not pass through any zeros or poles of F(s) shown The path Γ is called the Nyquist-path.

6 When s travels along the the Nyquist-path:
Nyquist criterion Im S-plane When s travels along the the Nyquist-path: Re Because the origin of the F(s)-plane is equivalent to the point (-1, j0) of the G(jω)H(jω)-plane, we have another statement of the argument principle: When ω vary from - (or 0) →+  , G(jω)H(jω) Locus mapped in the G(jω)H(jω)-plane will encircle the point (-1, j0) in the counterclockwise direction: here: P — the number of the poles of G(s)H(s) in the right hand of the s-plane. Z — the number of the zeros of F(s) in the right hand of the s-plane.

7 Nyquist-criterion If the systems are stable, should be Z = 0, then we have: The sufficient and necessary condition of the stability of the linear systems is : When ω vary from - (or 0) →+  , the G(jω)H(jω) Locus mapped in the G(jω)H(jω)-plane will encircle the point (-1, j0) as P (or P/2) times in the counterclockwise direction. ——Nyquist criterion Here: P — the number of the poles of G(s)H(s) in the right hand of the s-plane. Discussion : i) If the open loop systems are stable, that is P = 0, then: for the stable open-loop systems, The sufficient and necessary condition of the stability of the closed-loop systems is : When ω vary from - (or 0) →+  , the G(jω)H(jω) locus mapped in the G(jω)H(jω)-plane will not encircle the point (-1, j0).

8 Nyquist-criterion ii) Because that the G(jω)H(jω) locus encircles the point (-1, j0) means that the G(jω)H(jω) locus traverse the left real axis of the point (-1, j0) , we make: G(jω)H(jω) Locus traverses the left real axis of the point (-1, j0) in the counterclockwise direction —“positive traversing”. G(jω)H(jω) Locus traverses the left real axis of the point (-1, j0) in the clockwise direction —“negative traversing”. Then we have another statement of the Nyquist criterion: The sufficient and necessary condition of the stability of the linear systems is : When ω vary from - (or 0) →+  , the number of the net “positive traversing” is P (or P/2). Here: the net “positive traversing” —— the difference between the number of the “positive traversing” and the number of the “negative traversing” .

9 Nyquist-criterion Example :
The polar plots of the open loop systems are shown in, determine whether the systems are stable. Re Im (-1, j0) (2) P=0 Re Im (-1, j0) (1) P=2 stable stable Re Im (-1, j0) (4) P=0 Re Im (-1, j0) (3) P=2 unstable unstable


Download ppt "دکتر حسين بلندي- دکتر سید مجید اسما عیل زاده"

Similar presentations


Ads by Google