Presentation is loading. Please wait.

Presentation is loading. Please wait.

Spectroscopy of weakly bound and unbound nuclei

Similar presentations


Presentation on theme: "Spectroscopy of weakly bound and unbound nuclei"— Presentation transcript:

1 Spectroscopy of weakly bound and unbound nuclei
Takashi Nakamura Department of Physics, Tokyo Institute of Technology “Physics beyond the limits of stability : exploring the continuum”, 17-21,Oct.,2016, ECT*, Trento, Italy

2 --Weakly Bound and Unbound Nuclei --Dineutron, Oxygen Anomaly
Contents Introduction --Weakly Bound and Unbound Nuclei --Dineutron, Oxygen Anomaly Spectroscopy of 2n Halo Nuclei (11Li,6He,22C) Spectroscopy of Barely unbound 2n emitter (26O) Summary and Perspectives

3 Weakly Bound and Unbound Nuclei
Strong nn Correlations Barely Unbound Nulclei Fermi Level Halo Nuclei paring gap (~2MeV at A=30) J. Dobaczewski et al., Prog. Part. Nucl. Phys. 59, 432 (2007).

4 Dineutron? Unbound a= -18 fm q~1/l n-star Possible dineutron site: n
A.B.Migdal Strongly correlated “dineutron” on the surface of a nucleus Sov.J.Nucl.Phys.238(1973). n S=0 n n Dineutron: @ Low-dense neutron skin/halo? /surface of neutron star? S=0 Unbound a= -18 fm M.Matsuo PRC73,044309(2006). A.Gezerlis, J.Carlson, PRC81,025803(2010) n-star (s)2 q~1/l (s)2 +(p)2 +(d)2+… Possible dineutron site: 2n Halo Nuclei? 2n barely-unbound nuclei? 9Li 11Li n S2n=0.37MeV 24O n 26O S2n= (5) MeV Kondo et al., PRL2016

5 Evolution Towards the Stability Limit
Where is the neutron drip line? What are characteristic features of drip-line nuclei? How does nuclear structure evolve towards the drip line? Shell? Ca Deformation? K Ar Halo? Cl S Drip Line? Continuum? P Si N=28 Al Deformation Driven Halo Mg N=20 Na Ne N.Kobayashi et al., PRL 112, (2014). N=16 37Mg F O 31Ne TN et al., PRL 112, (2014). N 29Ne N.Kobayashi et al. PRC 93, (2016). C B 25O 26O 28O Oxygen Anomaly Be 16Be 21C Li 13Li 1n halo known 22C He 10He 2n halo known H 6He Dineutron? 4n halo/skin 5

6 Spectroscopy of 2n Halo Nuclei (11Li,6He,22C)
---Probed (mainly) by Coulomb Breakup T.N. Sun Yelei S. Leblond, J.Gieblin, N.A.Orr R. Minakata et al.

7 Probe of weakly bound states--Heavy target
Coulomb Breakup 22C 22C* 20C n g(virtual photon) n High-Z Target (Pb) Di-neutron Correlation Single particle state (Halo) Equivalent Photon Method dsCB 16p3 dB(E1) dEx = NE1(Ex) dEx 9hc Cross section = (Photon Number)x(Transition Probability) C.A. Bertulani, G. Baur, Phys. Rep. 163,299(1988). Halo  Soft E1 Excitation (E1 Concentration at Ex<1MeV) 7

8 Soft E1 Excitation of 2n-halo  dineutron-like correlation
Coulomb Breakup of 2n Halo  Probe of Dineutron Correlation n 11Li T.Nakamura et al. PRL96,252502(2006). rc-2n r2 n r1 9Li Correlation in the Ground State of 11Li Soft E1 Excitation of 2n-halo  dineutron-like correlation

9 6He 6He Sun Yelei (Saclay), TN et al. in preparation rc-2n
Present Preliminary Results 6He 70MeV/nucleon T.Aumann et al., PRC59, 1252 (1999).

10 22C (Z=6,N=16) Prominent 2n-Halo? ? N=16 Magicity?
Huge Reaction Cross Section (<rm2>)1/2=5.4(9) fm c.f. ~3.5 fm11Li K.Tanaka et al., PRL 104, (2010). sR(mb) S2n= -0.14(46) MeV L.Gaudefroy et al. PRL109,202503(2012). A Narrow Momentum Distribution ~73MeV/c N.Kobayashi et al. PRC86,054604(2012). ? N=16 Magicity? 20 1d3/2 16 2S1/2 1d5/2 A.Ozawa et al., PRL 84, 5493 (2000). M.Stanoiu et al., PRC78, (2008).

11 RI Beam Factory at RIKEN
SRC IRC fRC RRC RILAC ECR CSM GARIS & GARIS2 AVF RILAC2 RIPS BigRIPS ZeroDegree SAMURAI SHARAQ SCRIT KISS SLOWRI Rare RI Ring 2007~ In-Flight RI Separator with large acceptance SRC: World Largest Cyclotron (K=2500 MeV) Heavy Ion Beams up to 238U at 345MeV/u (Light Ions up to 440MeV/u) eg. 48Ca: ~500pnA (~3x1012pps) ~10 times compared to 2008 238U: ~30pnA (~2x1011 pps) ~103 times compared to 2007

12 Superconducting Analyzer for MUlti-particle from RAdio Isotope Beam
SAMURAI Superconducting Analyzer for MUlti-particle from RAdio Isotope Beam Kinematically Complete measurements by detecting multiple particles in coincidence Large momentum acceptance Brmax / Brmin ~ 2 – 3 Good Momentum Resolution Dp/p~ 1/1000 A/DA>100 (>5s) Large Bending Angle (~60deg) +4 Tracking Detectors T.Kobayashi NIMB 317, 294 (2013) Large angular acceptance for n +-8.8 deg (H) x deg(V) (~50% coverage < Erel ~ 5MeV) TN, Y.Kondo, NIMB 376, 156 (2016). Moderate Erel Resolution DE = 200 keV (s) at Erel=1MeV Stage: Rotatable ( degrees) Variety of Physics Opportunities Superconducting Magnet (3T, 2m dia. Pole 80cm gap) RI beam from BigRIPS Target rotatable Neutron(s) Proton Heavy Ion

13 SAMURAI Experiment May/2012
22C 19B 17B 20C 19C 23N 22N DE 3 3.6 4 3.8 3.4 3.2 2.8 A/Z SAMURAI Experiment May/2012 ~10cps RIBF (~10cph RIPS) First Full Exclusive Coulomb/Nuclear Breakup Measurement of 22C and 19B Pb3.26g/cm2 C 1.79g/cm2 n n 20C 22C 240MeV/nucleon

14 Coulomb Breakup of 22C (20C+n+n Spectrum)
R. Minakata, T.Nakamura counts Erel(MeV) 10 1 2 3 4 5 6 7 8 9 R.Minakata (Tokyo Tech) 22C+Pb22C* 20C+n+n Very Preliminary ! ~1b Strong Soft E1 Excitation  Evidence of Halo

15 Reaction Cross Section of 22C
Y.Togano, TN, Y.Kondo et al., Phys.Lett.B 761, 412 (2016). 22C+CAZ+X 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 5 6 7 Z A/Z 22C 20C 19C 19B 17B 14Be B.Abu-Ibrahim et al., PRC77, (2008). 22C 19C 20C sR=1.280(23)b : rrms=3.44(8) fm Smaller than the previous result (~2s): c.f. K.Takaka et al, MeV) rrms=5.4(9) fm

16 Ex Ex INVARIANT MASS SPECTROSCOPY OF 21C: C(22N / 22C,20C+n) …
Slide: N.A. Orr, Ph.D thesis of Sylvain Leblond INVARIANT MASS SPECTROSCOPY OF 21C: C(22N / 22C,20C+n) … … SAMURAI04 Sylvain C(22N,20C+n) C(22C,20C+n) Er=0.900.10 MeV Er=0.750.20 MeV Er=1.500.10 MeV l=0 l=0 l=2 Ex Ex S Leblond et al., NP1106-SAMURAI04 JA Tostevin S Leblond, PhD Thesis LPC/UCN Dec 2015

17 of Barely Unbound 2n emitter 26O
Spectroscopy of Barely Unbound 2n emitter 26O (& Other studies on unbound oxygen isotopes) Yosuke Kondo et al.

18 Study of unbound nuclei 25O and 26O at SAMURAI
Spokesperson Yosuke Kondo Experimental study of unbound oxygen isotopes towards the possible double magic nucleus 28O T. Otsuka et al., PRL105, (2010). Drip line 3N force: significant at N>16 24Ne 25Ne 26Ne 27Ne 28Ne 29Ne 30Ne 31Ne 32Ne 23F 24F 25F 26F 27F 28F 29F 30F 31F 22O 23O 24O 25O 26O 27O 28O Z=8 21N 22N 23N N=20 G. Hagen et al., PRL108, (2012). H. Hergert et al., PRL110, (2013). S.K.Bogner et al., PRL113, (2014). Again, this is the nuclear chart. One of the important problem of nuclear physics is the location of the drip line, which is strongly affected by the nuclear structure. The neutron drip line regularly evolves with increase of proton number like this dashed line. But anomalous behavior can be seen at Z=8. This anomalous behavior may be due to the shell evolution. So, it is very interesting to investigate towards 28O, which has Z=8 and N=20. Oxygen Anomaly 20C 21C 22C 19B N=16? Continuum Effect: A.Volya, V.Zelevinski, PRL94,052501(2005). K. Tsukyiyama, T. Otsuka, PTEP2015, 093D01 (2015). nn correlations: L.V. Grigorenko et al., PRL111,042501(2013). K. Hagino, H. Sagawa PRC89,014331(2014).

19 2n radioactivity of 26O? x 25O+n 26O 24O+2n 750keV ?
E. Lunderberg et al. PRL108, (2012) Er < 200keV 26O: 24O(0+) ⊗ (nd3/2)2 26O 24O+2n L.V. Grigorenko et al. PRC 84, (2011) Theory Usual 1n decay G~MeV or keV C. Caesar et al.PRC88, (2013) Excite state at 4.2MeV? Er < 120keV (95% CL) t < 5.7ns T1/2= ps (3ps systematic error) 2n radioactivity? Z. Kohley et al,PRL110, (2013) Large uncertainty of experimental study Only upper limit is given for the ground state energy Large systematic error in the lifetime measurement Excited State of 26O?

20 Experimental Setup at SAMURAI at RIBF
C target (1.8g/cm2) MWDC Ionization Chamber Superconducting Dipole Magnet (B=3.0T) NEBULA n 2 MWDCs 2Plastics n 27F ~210MeV/u (from BigRIPS) DALI2 MWDC 24O Hodoscope

21 Decay energy spectrum of 25O
24O+n Edecay Edecay=749(10)keV 25Ogs 26F+C 25O*24O+n Kondo et al. PRL2016 Edecay=749(10) keV = 88(6) keV C.R.Hoffman et al.,(MSU) PRL100, (2008) Previous Works (GSI) C.Caesar, PRC 2013 (MSU) Hoffman, PRL 2008

22 Study of 26O (SAMURAI02) 27F+C26O24O+2n Decay Energy (MeV)
Ground state (0+) 5 times higher statistics than previous study 18±3(stat)±4(syst)keV Finite value is determined for the first time 1st excited state (2+) Observed for the first time MeV N=16 shell closure is confirmed USDB cannot describe 2+ energy at 26O effects of pf shell?, continuum? 2n Correlations?, 3N force? Y. Kondo et al., Phys. Rev. Lett. 116, , (2016)

23 Spectra of 25O and 26O 25O (2+) 25O+n 0+ 24O+2n 25O+ n 26O 26O 24O
1.28(11) MeV 18(5) keV 749(10) keV (2+) Extremely weakly UNBOUND state! 25O+n 0+ 24O+2n 25O+ n 26O 26O E Centrifugal Barrier 24O n Strong 2n correlation? Hagi16: K.Hagino,H.Sagawa,PRC93,034330(2016). Voly06: A.Volya,V.Zelevinsky,PRC74,064314(2006). Tsuk15: K. Tsukyiyama, T. Otsuka, PTEP2015, 093D01 (2015).

24 Dineutron correlation in 26O?
1. Mixture of different L (parities)  Develop Dineutron n (0d3/2)2+ (s)2+(p)2+… 1S0 Hagino et al. 2. Spatially compact  Large width in Momentum n P1~ -P2 Can we see the dineutron correlation by 2n decay? 3. Effect of Final State Interactions (inc. Tunneling Effect)  Hagino’s talk N.B. Opposite correlation? In 13Li, 16Be 13Li: Z.Kohley et al., PRC87, (R)(2013). 16Be: A.Spyrou et al., PRL108, (2012). : Both observed 2n emitted in the same direction in c.m. They call it “dineutron”  Rather “Non-localized nn correlation”

25 13Li 26O Angular Correlations in 13Li and 26O
Z.Kohley et al., PRC 87, (R) 2013. 13Li n 26O Z.Kohley et al., PRC 91, (2015).

26 Masses of Oxygen Isotopes Beyond the dripline
Doubly Magic Or not? 1.28(11) MeV 18(5) keV 749(10) keV (2+) ? Extremely weakly UNBOUND state! Weakly Unbound 4n Emitter or not? 25O+n 0+ 24O+2n 25O+ n 26O 27O+n 28O 24O+4n 25O+3n 26O+2n E Centrifugal Barrier E 24O n 24O n S2n= (5) MeV Kondo et al., PRL2016 Strong 4n correlation? Or 2x 2n correlation? Strong 2n correlation?

27 27,28O measurements in 2015 (SAMURAI21)
Slides: Y.Kondo MINOS Superconducting Dipole Magnet (B=2.9T) MWDC NeuLAND NEBULA 2Plastics n 2 MWDCs DALI2 n NeuLAND MINOS n 29F (from BigRIPS) MWDC n Hodoscope 24O

28 High intense beam of 29F Z 29F 90cps A/Z High intense 29F beam
31Ne 30Ne Z High intense 29F beam (48Ca intensity > 500pnA) + thick LH2 target (15cm) highest luminosity for 28O Analysis: Under Progress

29 Summary and Outlook Barely bound and unbound nuclei
Strong neutron-neutron correlation (dineutron correlation) expected Dineutron Correlation in 2n Halo nuclei 11Li, 6He, 22C SAMURAI: Useful Facility for Drip Line Nuclei Reaction Cross Section of 22C Y.Togano, TN, Y.Kondo et al., PLB 761, 412 (2016). Spectroscopy of 21C S.Leblond, J.Gebelin, M.Marques, N.Orr, 21C spectrum  pin down s and d 1hole state of 22C Barely unbound 2n emitter 26O Y. Kondo et al., PRL 116, , (2016) . 26O(0+gs): Very weakly unbound 2n states  Correlation? Continuum? 26O(2+): Found for the first time at Erel=1.28(11) MeV  Shell Evolution?  27,28O : Experiment Successfully Done, Nov-Dec, 2015. Near Future: Variety of spectroscopies along n-drip line

30 Day-one Collaboration
Tokyo Institute of Technology: Y.Kondo, T.Nakamura, N.Kobayashi, R.Tanaka, R.Minakata, S.Ogoshi, S.Nishi, D.Kanno, T.Nakashima, J. Tsubota, A. Saito LPC CAEN: N.A.Orr, J.Gibelin, F.Delaunay, F.M.Marques, N.L.Achouri, S.Leblond, Q. Deshayes Tohoku University : T.Koabayshi, K.Takahashi, K.Muto RIKEN: K.Yoneda, T.Motobayashi ,H.Otsu, T.Isobe, H.Baba,H.Sato, Y.Shimizu, J.Lee, P.Doornenbal, S.Takeuchi, N.Inabe, N.Fukuda, D.Kameda, H.Suzuki, H.Takeda, T.Kubo Seoul National University: Y.Satou, S.Kim, J.W.Hwang Kyoto University : T.Murakami, N.Nakatsuka GSI : Y.Togano Univ. of York: A.G.Tuff GANIL: A.Navin Technische Universit¨at Darmstadt: T.Aumann Rikkyo Univeristy: D.Murai Universit´e Paris-Sud, IN2P3-CNRS: M.Vandebrouck

31 SAMURAI21 collaboration—27,28O
Y.Kondo, T.Nakamura, N.L.Achouri, H.Al Falou, L.Atar, T.Aumann, H.Baba, K.Boretzky, C.Caesar, D.Calvet, H.Chae, N.Chiga, A.Corsi, H.L.Crawford, F.Delaunay, A.Delbart, Q.Deshayes, Zs.Dombrádi, C.Douma, Z.Elekes, P.Fallon, I.Gašparić, J.-M.Gheller, J.Gibelin, A.Gillibert, M.N.Harakeh, A.Hirayama, C.R.Hoffman, M.Holl, A.Horvat, Á.Horváth, J.W.Hwang, T.Isobe, J.Kahlbow, N.Kalantar-Nayestanaki, S.Kawase, S.Kim, K.Kisamori, T.Kobayashi, D.Körper, S.Koyama, I.Kuti, V.Lapoux, S.Lindberg, F.M.Marqués, S.Masuoka, J.Mayer, K.Miki, T.Murakami, M.A.Najafi, K.Nakano, N.Nakatsuka, T.Nilsson, A.Obertelli, F.de Oliveira Santos, N.A.Orr, H.Otsu, T.Ozaki, V.Panin, S.Paschalis, A.Revel, D.Rossi, A.T.Saito, T.Saito, M.Sasano, H.Sato, Y.Satou, H.Scheit, F.Schindler, P.Schrock, M.Shikata, Y.Shimizu, H.Simon, D.Sohler, O.Sorlin, L.Stuhl, S.Takeuchi, M.Tanaka, M.Thoennessen, H.Törnqvist, Y.Togano, T.Tomai, J.Tscheuschner, J.Tsubota, T.Uesaka, H.Wang, Z.Yang, K.Yoneda Tokyo Tech, Argonne, ATOMKI, CEA Saclay, Chalmers, CNS, Cologne, Eotvos, GANIL, GSI, IBS, KVI-CART, Kyoto Univ., Kyushu Univ., LBNL, Lebanese-French University of Technology and Applied Science, LPC-CAEN, MSU, Osaka Univ., RIKEN, Ruđer Bošković Institute, SNU, Tohoku Univ., TU Darmstadt, Univ. of Tokyo 88 Participants 25 Institutes

32 Backup

33 N=16 22C(2+) SAMURAI04 – DAYONE: C(23N,20C+n+n) … … SAMURAI + NEBULA
J.Gibelin, N.A.Orr <23N|22C> SHELL MODEL- WBP EX [MeV] Jp C2S BEAMTIME = 1.4 DAYS < 23N >  45 pps C TARGET = 2 g/cm2

34 Decay energy spectrum of 26O (24O+2n, 24O+n)
26Ogs Counts /20keV Edecay(24O+n) Edecay(24O+n+n) =Edecay(24O+n)+Edecay(25O+n) 24O n 26Ogs 26O1st+25Ogs 27F+C26O,25O 24O+n+X 27F+C26O24O+2n 26O1st New! Counts /50keV Edecay(24O+n+n) Finite Value! Most likely 2+ No peak at ~4.2MeV

35 MINOS at the RIBF Slide by Obertelli, CEA SACLAY, Obertelli et al.
mm liquid hydrogen target Vertex resolution : < 5 mm FWHM Detection efficiency > 90% Vertex tracker proton Target e- Project started in November 2010 In use at the RIBF since 2014 DALI2: S. Takeuchi et al., Nucl. Instr. Meth. A 763, 596 (2014) MINOS: A. Obertelli et al., Eur. Phys. Jour. A 50, 8 (2014)

36 Deformation Driven p-wave Halo --- 31Ne, 37Mg, 29Ne
Sn (31Ne)=-0.06(0.42) MeV L.Gaudefroy et al., PRL(2012) Coulomb breakup σ(E1;0+g.s.) (b) |31Neg.s. 〉 : 3/2- |30Ne(0+g.s.) ⊗ p3/2〉 component Exp. σ-1n(E1;0+g.s.) = 448(108) mb Theoretical calc. for |31Neg.s. 〉 = |30Ne(0+g.s.) ⊗ p3/2〉 (C2S = 1) Nuclear breakup σ(C;0+g.s.) (b) Exp. σ-1n(C;0+g.s.) = 33(15) mb 68%C.L. 31Ne: 3/2- p-wave C2S Deformed in spite of N=21 [321 3/2] b~0.5 Sn (31Ne) (MeV) 31Ne: TN, N.Kobayashi et al., PRL 112, (2014). 3/2- Sn=150(16)keV 37Mg: N.Kobayashi, TN et al., PRL 112, (2014). 3/2-/1/2- Sn=220(12)keV 29Ne: N.Kobayashi, TN et al., PRC 93, (2016). 3/2- Sn=960(140) keV

37 Courtesy of N. Fukunishi
RIBF Performance Summary 11.4 kW 320 AMeV 4He 18O 294 AMeV 18O 1000 13.1 kW 78Kr 48Ca 1012 pps 70Zn 100 Graphite-sheet stripper 86Kr 124Xe 4.0 kW (pnA) 10 He-gas stripper / Be-disk stripper / fRC upgrade Variable energy 238U Fixed energy SC-ECRIS with 28-GHz RILAC2 AVF injection 1 SC-ECRIS with 18-GHz RILAC (test operation) 18-GHz 0.1 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 (year) Beam energies of the beams without explicitly indicated are 345 AMeV. Courtesy of N. Fukunishi

38 Probe of weakly (un) bound states--Light target
e.g. 22C, 21C 22C 12C 20C n 22C* Inelastic scattering 2+ (?) ds/dErel 22C 20C 21C* n Knockout reaction 12C 12C P//(20C) ds/dErel s d N.Kobayashi,TN,PRC2012


Download ppt "Spectroscopy of weakly bound and unbound nuclei"

Similar presentations


Ads by Google