Presentation is loading. Please wait.

Presentation is loading. Please wait.

M. Matsuo, PRC73(’06)044309 Matter Calc. Two-particle density.

Similar presentations


Presentation on theme: "M. Matsuo, PRC73(’06)044309 Matter Calc. Two-particle density."— Presentation transcript:

1

2 M. Matsuo, PRC73(’06)044309 Matter Calc.

3 Two-particle density

4 Dipole Excitations Response to the dipole field: Smearing: Experimental proof of di-neutron

5 Comparison with expt. data ( 11 Li) E peak =0.66 MeV B(E1) = 1.31 e 2 fm 2 (E < 3.3 MeV) T. Nakamura et al., PRL96,252502(2006) E peak ~ 0.6 MeV B(E1) = (1.42 +/- 0.18) e 2 fm 2 (E < 3.3 MeV) T. Aumann et al., PRC59, 1259(1999)

6 Constraining the size of 11 Li by various experiments R r H. Esbensen et al., Phys. Rev. C (2007).

7 Geometry of Borromean nuclei 11 Li 6 He B(E1) matter radius ( 11 Li) ( 6 He) K.Hagino and H. S.,PRC76(’07)047302 “experimental” mean opening angle C.A. Bertulani and M.S. Hussein, PRC76(’07)051602  12

8 11 Li three-body break-up cross sections K. Hagino, H.S.,T.Nakamura and S.Shimoura, PRC80,031301(R)(2009)

9 Dalitz Plot of Triple coincidence experiments Exp. T. Nakamura et al., to be published

10 Nakamura-san’s slides

11 Double differential strength function for 11 Li full calculation (with FSI) ( without FSI) (with FSI) No V n-core (No V n-core virtual s-state!

12 full calculationNo V n-core (with FSI) ( without FSI)

13 Di-proton correlation in a proton-rich Borromean nucleus 17 Ne Tomohiro Oishi A, Kouichi Hagino A, Hiroyuki Sagawa B A Tohoku Univ., B Univ. of Aizu PRC82, 024315(2010) http://arxiv.org/abs/1007.0835

14 2.2 Pairing interaction Density-dependent contact interaction Explicit Coulomb interaction We need cutoff:E C to determine v 0 (pairing in vacuum). Other parameters are fixed to obtain g.s.energy of 17 Ne:-0.944 MeV.

15 2.3 Single-particle basis Woods-Saxon + Coulomb potential for p-Core

16 3.1 Results (1)

17 3.2 Results (2) “Di-proton correlation”

18 Summary I  Application of three-body model to Borromean nuclei 11 Li  Di-neutron wave function for each R Concentration of a Cooper pair on the nuclear surface Relation to BCS-BEC crossover phenomenon  E1 response and geometry of Borromean nuclei  n-n coincidence cross sections from 11Li* and 6He* importance of n-core interaction clear evidence of virtual s-state in n-9Li system correlation angle is determined experimentally. strong pair correlations in di-neutrons  12

19 Di-neutron correlations in 11 Li and 6 He  K.Hagino and H. S., PRC72(’05) 044321.  K.H.agino and H. S., PRC75(’07)021301(R).  K.Hagino, H. S., J. Carbonell, and P. Schuck, PRL99(’07)022506.  H. Esbensen, K.Hagino, P. Mueller, and H. S., PRC76(’07)024302.  K.Hagino and H. S., PRC76(’07) 047302. energy and angular n-n coincidence cross sections Recent publications:  K.Hagino, H.S.,T. Nakamura and S. Shimoura, PRC80,031301 (R)(2009). Di-proton correlations in 17Ne  T.Oishi, K. Hagino and HS, PRC82,024315 (2010).  Strong di-proton correlations is found in 17Ne  Two body Coulomb interaction decreases 13% of di-proton correlations. Summary II

20 Spatial structure of neutron Cooper pair in infinite matter M. Matsuo, PRC73(’06)044309 BCS Crossover region

21 BCS-BEC crossover behavior in infinite nuclear matter Neutron-rich nuclei Weakly bound levels dilute density around surface (halo/skin) pairing gap in infinite nuclear matter M. Matsuo, PRC73(’06)044309


Download ppt "M. Matsuo, PRC73(’06)044309 Matter Calc. Two-particle density."

Similar presentations


Ads by Google