Download presentation
Presentation is loading. Please wait.
1
Surface Area & Volume Geometry/Trig 2 Fall 2007
2
Rectangular Prism – A three dimensional object with two rectangular bases and four rectangular lateral faces. Base (B) Base (B) Right Left Front Back
3
Surface Area – the sum of the areas of all of the faces (bases and lateral faces) of a solid.
Lateral Area – the sum of the areas of the lateral faces of a prism
4
How do we find Surface Area?
Example 1 Find the area of each face: Front: ____________ Back: ____________ Top: _____________ Bottom: __________ Left Side: ________ Right Side: _______ Surface: ___________ 6cm 80cm2 8cm 80cm2 10cm 60cm2 60cm2 48cm2 48cm2 376cm2
5
How do we find Lateral Area?
Example 1 Find the area of each face: Front: ____________ Back: ____________ Top: _____________ Bottom: __________ Left Side: ________ Right Side: _______ Lateral Area: ___________ 6cm 80cm2 8cm 80cm2 10cm 60cm2 60cm2 48cm2 48cm2 256cm2
6
Formula for Lateral Area:
Formula for Surface Area: Lateral Area = Perimeter of Base x Height L.A. = ph Surface Area = Lateral Area + 2(Area of the Base) T.A. = L.A. + 2B
7
Example 2 – Find the Lateral Area and the Surface Area
L.A. = Perimeter of Base x Height L.A. = ph p = = 52m h = 6m L.A. = 52 x 6 = 312m2 T.A. = L.A. + 2(Area of the Base) T.A. = L.A. + 2B L.A. = 312m2 B = 20 x 6 = 120m2 T.A. = (120) = 552m2
8
Example 3 – Find the Lateral Area and the Surface Area
L.A. = Perimeter of Base x Height L.A. = ph p = = 36in h = 9in L.A. = 36 x 9 = 324in2 T.A. = L.A. + 2(Area of the Base) T.A. = L.A. + 2B L.A. = 324in2 B = 9 x 9 = 81in2 T.A. = (81) = 486in2
9
Volume - the amount of space that an object occupies
The units for Volume are always cubed. Examples: in3, m3, cm3. Formula for Volume of a Rectangular Prism: V = Area of the base x height V = Bh
10
V = Area of the base x height V = Bh
Example 1 6cm B = 6 x 10 = 60cm2 8cm h = 8cm 10cm V = 60 x 8 = 480cm3
11
V = Area of the base x height V = Bh
Example 2 6m 6m B = 6 x 20 = 120m2 20m h = 6m V = 120 x 6 = 720m3
12
V = Area of the base x height V = Bh
Example 3 9in B = 9 x 9 = 81in2 9in h = 9in 9in V = 81 x 9 = 729in3
13
L.A. = ph T.A. = L.A. + 2B V = Bh L.A. = 40 x 5 T.A. = 200 + 2(91)
Find the Lateral Area, Surface Area, and Volume of the rectangular prism. Example 4 p = = 40in 7in h = 5in 5in B = 7 x 13 = 91in2 13in L.A. = ph T.A. = L.A. + 2B V = Bh L.A. = 40 x 5 T.A. = (91) V = 91 x 5 L.A. = 200in2 T.A. = 382in2 V = 455in3
14
We use the same formulas for lateral area, surface area and volume when dealing with other right prisms. L.A. = ph T.A. = L.A. + 2B V = Bh Triangular Prism Trapezoidal Prism Hexagonal Prism
15
Area of the Base (B) = ½(12)(4) = 24m2
Example 1 12m L.A. = ph = (27)(12) 4m L.A. = ph = 324m2 8m 7m 12m T.A. = L.A. + 2B = 324m2 + 2(24) T.A. = 372m2 V = Bh = (24)(12) V = 288m3 Area of the Base (B) = ½(12)(4) = 24m2 Perimeter of Base (p) = = 27m Height (h) = 12m
16
V = Bh = (48)(14) V = 672m3 L.A. = ph = (36)(14) L.A. = 504m2
Example 2 10m 10m 6m 16m 14m V = Bh = (48)(14) V = 672m3 L.A. = ph = (36)(14) L.A. = 504m2 T.A. = L.A. + 2B = (48) T.A. = 600m2
17
B = ½h(b1 + b2) B = ½10(8 + 30) B = 190m2 V = Bh = (190)(40)
Example 3 10m B = ½h(b1 + b2) B = ½10(8 + 30) 40m B = 190m2 18m 14m 8m V = Bh = (190)(40) V = 7600m3 L.A. = ph = (70)(40) L.A. = 2800m2 T.A. = L.A. + 2B = (190) T.A. = 3180m2
18
Area of Base (B) = ½ (36) = 54 Area of Base (B) = ½ap 6cm Example 4
30 Area of Base (B) = ½ap 3cm
19
Cylinders – Cylinders are very similar to the right prisms that we have been examining. The only difference is that instead of polygons (rectangle, triangle, trapezoid, hexagon) as bases, a cylinder has circular bases. The formulas to calculate lateral area, Surface area, and volume will be nearly the same as prisms.
20
The formula for Volume remains the same. (V = Bh)
The formula for Volume remains the same. (V = Bh). Because in this case the base is a circle, we must use the formula for finding area of a circle. Recall that area of a circle is calculated by using A = pr2 The Lateral Area and Surface Area are calculated in a similar manner. However we must replace “perimeter of base” with circumference of base. C = 2pr
21
Therefore, to calculate Surface Area and Volume of a cylinder you must find three key pieces of information: 1. Area of the Base – pr2 2. Circumference of the Base – 2pr 3. Height of the object - given
22
Radius – Area of Base = Circumference = Height = Volume = = L.A. = =
Example 1 – Find the Lateral Area, Surface Area, and Volume of the Cylinder. Radius – Area of Base = Circumference = Height = Volume = = L.A. = = T.A. = = 4in 10in 16pin2 8pin 4in 10in (16p)(10) 160pin3 (8p)(10) 80pin2 80p + 2(16p) 112pin2
23
Radius – Area of Base = Circumference = Height = Volume = = L.A. = =
Example 2 7m Radius – Area of Base = Circumference = Height = Volume = = L.A. = = T.A. = = 7m 14m 49pm2 14pm 14m (49p)(14) 686pm3 (14p)(14) 196pm2 196p + 2(49p) 294pm2
24
Radius – Area of Base = Circumference = Height = Volume = = L.A. = =
Example 3 75cm Radius – Area of Base = Circumference = Height = Volume = = L.A. = = T.A. = = 50cm 2500pcm2 100cm 100pcm 75cm (2500p)(75) 187500pcm3 (100p)(75) 7500pcm2 7500p + 2(2500p) 12500pcm2
25
Radius – Area of Base = 182.25pin2 Circumference = Height = Volume = =
Example 4 You can have decimals in your answers, if there are decimals in the problems. Radius – Area of Base = pin2 Circumference = Height = Volume = = L.A. = = T.A. = = 22.8in 13.5in 27in 27pin 22.8in (182.25p)(22.8) 4155.3pin3 (27p)(22.8) 615.6pin2 615.6p + 2(182.25p) 980.1pin2
26
Homework Answers: p. 6 1. V = 9072m3 L.A. = 3276m T.A. = 3708m2 2. V = 60000m3 L.A. = 11200m2 T.A. = 12400m2 3. V = m3 L.A. = 25500m2 T.A. = 39500m2 p. 7 4. V = 19200m L.A. = 5520m2 T.A. = 6160m2 5. V = L.A. = 720cm2 T.A. = 6. V = 68600m L.A. = 8120m2 T.A. = 10080m2
27
Homework Answers: p. 11 1. V = 7943pft3 L.A. = 1222pft2 T.A. = 1560pft2 2. V = 864pft3 L.A. = 288pft2 T.A. = 360pft2 3. V = 180pin L.A. = 60pin T.A. = 132pin2
28
Slant Height (l) Height (h) Radius (r) A cone has one circular base.
Day 2 – Pyramids & Cones A cone has one circular base. Slant Height (l) Height (h) Radius (r)
29
Cone Formula for Volume Volume = Area of the Base x Height
Formula for Lateral Area L.A. = ½Circumference of Base x Slant Height Cone Formula for Surface Area (Surface Area) Surface Area = Lateral Area + Area of Base
30
Therefore, to calculate Surface Area and Volume of a Cone you must find four key pieces of information: 1. Area of the Base – pr2 2. Circumference of the Base – 2pr 3. Height of the object – h 4. Slant Height - l
31
6m 36pm2 12pm 8m 10m 60pm2 60p + 36p = 96pm2 96pm3 Radius (r) –
Example 1 Radius (r) – Area of the Base (B) – Circumference of Base (C) – Height (h) – Slant Height (l) – Lateral Area (L.A.) – Surface Area (T.A) – Volume (V) - 6m 36pm2 10m 8m 12pm 6m 8m 10m 60pm2 60p + 36p = 96pm2 96pm3
32
9m 81pm2 18pm 12m 15m L.A. = 135pm2 135p+ 81p = 216pm2 324pm3
Example 2 Radius (r) – Area of the Base (B) – Circumference of Base (C) – Height (h) – Slant Height (l) – Lateral Area (L.A.) – Surface Area (T.A) – Volume (V) - 9m 81pm2 15m 12m 18pm 9m 12m 15m L.A. = 135pm2 135p+ 81p = 216pm2 324pm3
33
Example 3 – Lateral Area – 260pcm2 Surface Area – 360pcm2 Volume – 800pcm3 Example 4 – Lateral Area – 15pin2 Surface Area – 24pin2 Volume – 12pin3
34
A regular square pyramid has a square base.
Slant Height (l) Height (h) Base Edge (e)
35
Pyramid Formula for Volume Volume = Area of the Base x Height
Formula for Lateral Area L.A. = ½ Perimeter of Base x Slant Height Pyramid Formula for Surface Area Surface Area = Lateral Area + Area of Base
36
Therefore, to calculate Surface Area and Volume of a Pyramid you must find four key pieces of information: 1. Area of the Base – e2 2. Perimeter of the Base – 4e 3. Height of the object – h 4. Slant Height - l
37
Example 1 Base Edge (e) – Height (h) – Slant Height (l) – Area of Base (B) – Perimeter of Base (p) – Lateral Area (L.A.) – Surface Area (T.A) – Volume (V) - 12in 10in = l 8in 8in = h 10in 144in2 12in = e 48in 240in2 = 384in2 384in3
38
Example 2 Base Edge (e) – Height (h) – Slant Height (l) – Area of Base (B) – Perimeter of Base (p) – Lateral Area (L.A.) – Surface Area (T.A) – Volume (V) - 20in 26in 24in 24in = h 26in = l 24in 26in 10in 400in2 20in = e 80in 1040in2 = 1440in2 3200in3
39
Example 3 – height = 12m Lateral Area – 260m2 Surface Area – 360cm2 Volume – 400cm3 Example 4 – Lateral Area – 544ft2 Surface Area – 800ft2 Volume – 1280ft3
40
Spheres
41
Sphere – the set of all points a given distance away from a center point.
Volume - Surface Area -
42
Example 1 – Find the Surface Area and Volume of the Sphere
Radius – 6in Volume - Surface Area - 6in T.A = 4pr2 T.A = 4p62 T.A = 144pin2
43
Example 2 r = 15mm V = 4500pmm3 T.A. = 900pmm2 Example 3 r = 1cm V = T.A. = 4pcm2 Example 4 r = 13.1ft V = pft3 T.A. = 686.4pft2
44
Similar Solids Theorem 12-1
If the scale factor of two similar solids is a:b, then 1. The ratio of their perimeters is a:b. 2. The ratio of their base areas, lateral areas, and Surface areas is a2:b2. 3. The ratio of their volumes is a3:b3.
45
Ratio of Surface Areas:
Cubes 6 10 Scale Factor: Ratio of Surface Areas: Ratio of Volumes: 6 to 10 = 3 to 5 9 to 25 All Cubes are Similar. 27 to 125
46
Similar Cylinders 2 3 Scale Factor: Ratio of Surface Areas: Ratio of Volumes: 3 to 2 9 to 4 27 to 8
47
All Spheres are Similar.
8 2 Scale Factor: Ratio of Surface Areas: Ratio of Volumes: 8 to 2 = 4 to 1 16 to 1 64 to 1 All Spheres are Similar.
48
Warm Up The circumference of the earth is approximately 40820km. If you assume that the Earth is a perfect sphere, find its volume and Surface area. (Use p = 3.14). Answer for Volume will need to be in scientific notation.
50
p. 30 1. Sphere T.A. = 64pm2 2. Cone V = 320pm3
Homework Answers: p. 30 1. Sphere T.A. = 64pm2 2. Cone V = 320pm3 L.A. = 136pm2 T.A. = 200pm2 3. Cylinder V = 17.2pcm3 L.A. = 17.2pcm T.A. = 25.2pcm2
51
p. 31 2. Triangular Prism V = 330m3 L.A. = 330m2 T.A. = 390m2
Homework Answers: p. 31 2. Triangular Prism V = 330m3 L.A. = 330m2 T.A. = 390m2 3. Square Pyramid V = 400m3 L.A. = 260m T.A. = 360m2
52
3. Trapezoidal Prism V = 40.5in3 L.A. = 78in2 T.A. = 91.5in2
Homework Answers: p. 32 2. Sphere V = pft3 T.A. = pft2 3. Trapezoidal Prism V = 40.5in3 L.A. = 78in T.A. = 91.5in2
53
Unit 9, Worksheet 1 Sorry! Labels wouldn’t fit. Make sure all of the areas have units2 and all of the volumes have units3. # L.A T.A V 1. 28 52 24 2. 48 78 45 3. 54 94 60 4. 72 100 56 5. 36 6. 27 7. 80 64 8. 88 9. 108 # L.A T.A V 10. 80 110 75 11. 320 446 630 12. 304 424 480 13. 240 528 720 14. 810 1162 2640 15. 1200 1416 2700 16. 132 356 336 17. 50 700 300 18. 35 52 340
54
1. Rectangular Prism V = 2400in3 L.A. = 480in2 T.A. = 1280in2
Homework Answers: p. 17 1. Rectangular Prism V = 2400in3 L.A. = 480in2 T.A. = 1280in2 2. Triangular Prism V = ft3 L.A. = 1334ft2 T.A. = 1659ft2 3. Cylinder V = pm3 L.A. = 17600pm T.A. = 18568pm2
55
3. Rectangular Prism (Cube) V = 3375in3 L.A. = 900in2 T.A. = 1350in2
Homework Answers: p. 18 1. Trapezoidal Prism V = 12000m3 L.A. = 4200m2 T.A. = 4600m2 2. Cylinder V = 896pm3 L.A. = 224pm2 T.A. = 352pm2 3. Rectangular Prism (Cube) V = 3375in3 L.A. = 900in T.A. = 1350in2
56
Homework Answers: p. 21 1. V = 320pin3 L.A. = 136pin2 T.A. = 200pin2 2. V = 768pft3 L.A. = 240pft2 T.A. = 384pft2 3. V = 100pcm3 L.A. = 65pcm2 T.A. = 90pcm2
57
Homework Answers: p. 24 1. V = 9680m3 L.A. = 2684m2 T.A. = 3168m2 2. V = 540ft3 L.A. = 369ft2 T.A. = 450ft2 3. V = 1568in3 L.A. = 700in2 T.A. = 896in2
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.