Download presentation
1
César de Julián Fernández
Magnetoplasmonics II César de Julián Fernández Magnetic Materials Group IMEM-CNR Parma
2
MAGNETO-PLASMONICS Magnetic Magnetoplasmonics (I) - Introduction
Au Surface plasmon resonance Magnetic Mulvaney MRS Bull (2001) Light – Plasmon- Magnetism Magneto-optics Hybrid Materials Multifunctional Materials
3
Magnetoplasmonics (I) - Schedule
0. Introduction 1. Plasmonics a General phenomenology and materials b Applications of plasmonics 2. Magnetoplasmonics a Plasmonics and magnetism? b. Principles of Magneto-optics c Magnetoplasmonics materials and phenomena d Applications
4
A (brief) Introduction to Magneto-optics
Magnetoplasmonics (II) – Magneto-optics A (brief) Introduction to Magneto-optics The first MOKE measurement J. Kerr Philos. Mag 5 (1878) 161
5
Magnetoplasmonics (II) – Magneto-optics
Change of the polarization of the light after going through a magnetized material
6
Faraday Effect MO effect for optical transmission Magnetic rotation
Magnetoplasmonics (II) – Magneto-optics Faraday Effect MO effect for optical transmission Magnetic rotation (Faraday rotation)F(Faraday Ellipticity)F Absorption Magnetic Circular Dichroism MCD Comparison to Natural Optical Rotation Faraday Effect is Nonreciprocal (Double rotation for round trip) Natural rotation is Reciprocal (Zero for round trip) Verdet Constant F=VlH (For paramagnetic and diamagnetic materials)
7
Magnetoplasmonics (II) – Magneto-optics
Linearly polarized light can be decomposed to LCP and RCP Difference in phase causes rotation of the direction of Linear polarization (Faraday Rotation) Difference in amplitudes makes Elliptically polarized light (Faraday Elliticity) In general, elliptically polarized light With the principal axis rotated
8
Kerr Effect Reflexion Configuration Ellipsometry
Magnetoplasmonics (II) – Magneto-optics Kerr Effect Reflexion Configuration Ellipsometry
9
Kerr Effect (MOKE) Magnetoplasmonics (II) – Magneto-optics
Surface sensibility Small Effect 10-4 Sub-nanometric sensibility In metals Penetration length tens of nanometers Surface Magneto-optical Kerr effect: SMOKE
10
Magneto-optical tensor
Magnetoplasmonics (II) – Magneto-optics Magneto-optical tensor H=0 HZ Magneto-optical components Optical components The change of sign comes from the Nonreciprocal nature of the MO effects
11
Kerr effect depends on relative orientation of M(B)
Magnetoplasmonics (II) – Magneto-optics M E εk θk x y z Kerr effect depends on relative orientation of M(B) M E θk εk θ0 θ0 M E Polar + ie = f(Mz) Longitudinal + ie = f(Mx) Transverse Rpp = f(My) (H) Mx (H) (H) Optical properties are controlled by an external magnetic field or with the magnetic state
12
Magneto-optical tensor
Magnetoplasmonics (II) – Magneto-optics Magneto-optical tensor In Faraday Configuration (k ||M) Faraday Configuration MOKE Configuration Magnetometry Spectroscopy Electronic properties Magnetic properties MO
13
Origin of the MO effects
Magnetoplasmonics (II) – Magneto-optics Origin of the MO effects Faraday Effect Drude model Optical and MO properties For Au (600 nm, B=1 T) exy=1.2·10-4 +i1.5·10-3 In metals, semiconductors, some paramagnetic materials and organic compounds
14
Without magnetization
Magnetoplasmonics (II) – Magneto-optics Origin of the MO effects Fermi Golden Rules L=1 L=0 LZ=+1,0,-1 LZ=0 Jz=-3/2 Jz=-1/2 Jz=+1/2 Jz=+3/2 Exchange splitting Exchange +spin-orbit Without magnetization DL= ±1 Selectivity to some transitions Quantum-mechanical approach
15
1.Diamagnetic lineshape (A term)
Magnetoplasmonics (II) – Magneto-optics MO transitions Excited state Ground state 0 1 2 Without magnetization With Lz=0 Lz=+1 Lz=-1 1+2 Photon energy ’xy ”xy 1.Diamagnetic lineshape (A term) Like Faraday MO contribution
16
2.Paramagnetic transitions (C term)
Magnetoplasmonics (II) – Magneto-optics MO transitions 2.Paramagnetic transitions (C term)
17
For example: Magnetite
Magnetoplasmonics (II) – Magneto-optics For example: Magnetite centrosymmetric, octahedral site are parity forbidden. ISCT: Intersublattice Charge transitions A B IVCT: Intervalance charge transitions A A ,B B Others: Crystal field transitions Fontjijn et al. JAP 85 (1999) 5100
18
Calculations of the optical dielectric tensor
Magnetoplasmonics (II) – Magneto-optics Calculations of the optical dielectric tensor considering the band structure
19
Magnetoplasmonics (II) – Magneto-optics
MO effects are correlated with the magnetic anistropy Oppeneer PRB 45 (1992) 1092 Osgood III PRB
20
Hence: Allowed MO transitions DL= ±1 Spin-orbit coupling
Magnetoplasmonics (II) – Magneto-optics Hence: Allowed MO transitions DL= ±1 Spin-orbit coupling Several transitions Paramagnetic + diamagnetic Interband + Intraband Magnetic (M) and non-magnetic (H) Materials A brief Introduction to Magneto-Optics
21
Optoelectronics needs a Magnetoplasmonic solutions for MO isolators!!!
Magnetoplasmonics (II) – Magneto-optics Applications Magneto-Optical isolator non-reciprocal photonic component which : Transmits light in forward direction Reflects light in backward direction Role : protect telecom laser from prejudicial optical feedback Material : iron garnet (transparent at telecom wavelength) Expensive No integration in optoelectronic devices Need of appropriate polarizers to obtain the isolation effect Weak MO effect => large interaction length needed Optoelectronics needs a Magnetoplasmonic solutions for MO isolators!!! Bi et al Materials, 6,
22
P Mg Purpose of magnetoplasmonics
Magnetoplasmonics (II) – Magneto-optics Purpose of magnetoplasmonics Control of MO activity with plasmon excitation P Mg Control of plasmon properties with an external magnetic field
23
The wall of magnetoplasmonics
Magnetoplasmonics (II) – Magneto-optics The wall of magnetoplasmonics Structural / chemical modifications Direct electronic correlations Magnetic properties Plasmonics NANO Surface modifications Indirect correlations All chemico-physics properties are modified
24
Magnetoplasmonics (II) – Magneto-optics
0. Introduction 1. Plasmonics a General phenomenology and materials b Applications of plasmonics 2. Magnetoplasmonics a Plasmonics and magnetism? b. Principles of Magneto-optics c Magnetoplasmonics materials and phenomena e Applications MO in Plasmonics materials? Plasmonics in Magnetic Materials? Novel properties?
25
MO effects in non-magnetic conductors
Magnetoplasmonics (I) – MO effects in plasmonics MO effects in non-magnetic conductors Faraday Effect Drude model Optical and MO properties For Au (600 nm, B=1 T) exy=1.2·10-4 +i1.5·10-3
26
Generalized Maxwell Garnett Equation for LSPR
Magnetoplasmonics (II) – MO effects in Plasmonics Generalized Maxwell Garnett Equation for LSPR Hui Appl. Phys. Lett. 50, 950 (1987) Marinchio et al. Phys. Rev. B 85 (2012)
27
Phenomenological description
Magnetoplasmonics (II) – MO effets in Plasmonics Phenomenological description The MO effect is usually a weak correction e=eO + De The effective polarizability can be splitted into two terms B The MO polarizability comes from: In plasmonic materials: Lorentz force In magnetic materials: SO coupling Maccaferri et al. Phys. Rev. Lett. 111 (2013) Marinchio et al. Phys. Rev. B 85 (2012)
28
MO in dots Magnetoplasmonics (II) – MO effets in Plasmonics
Sepulveda et al. Phys. Rev. Lett. 104 (2010)
29
LSPR with circular polarized ligth (Magnetic dichroism)
Magnetoplasmonics (II) – Magnetoplasmonics in Plasmonics LSPR with circular polarized ligth (Magnetic dichroism) Circular polarized plasmons 13 nm Pineider Nano Letters 13 (2013) 4785
30
LSPR with circular polarized ligth (Magnetic dichroism)
Magnetoplasmonics (II) – Magnetoplasmonics in Plasmonics LSPR with circular polarized ligth (Magnetic dichroism) Circular polarized plasmons DA (+H) = LCD-RCD Generalized Maxwell-Garnett for circular plasmons Weick, Phys. Rev. B 83, (2011) Modulation of SPR by the magnetic field
31
Plasmonics in magnetic materials
Magnetoplasmonics (II) – Magneto-optics in Plasmonics Also in SPP Au/air Dk/k×B = 10-6 Co/air Dk/k×M =10-4 Very small effect. Better magnetic materials? Plasmonics in magnetic materials Too much losses!! Wallis PRB 9 (1974) 3424 Armelles Adv. Optical Mater. 1 (2013) 10–35
32
LSPR in magnetic materials
Magnetoplasmonics (II) – Magnetoplasmonics in Plasmonics LSPR in magnetic materials Mie Calculation (n=1.5) P (eV) e1 633 nm e2 Au 8.9 -11.7 1.26 Ag 9.2 -18.3 0.48 Co 9.74 -12.5 18.4 Fe 17.0 -1.03 17.6 Ni 9 -13.0 16.3 Nickel is the best!!! But always dumping Chen Small 7, (2011) 2341–2347
33
LSPR in magnetic NPs SPR in nUV
Magnetoplasmonics (II) – Plasmonics in Magnetic nanostructures LSPR in magnetic NPs Co NPs Clavero et al. J. Appl. Phys. 100, (2006) Kalska et al. J. Appl. Phys. 98 (2005) 44318 Fe NPs SPR in nUV Mie model does not work Electronic structure of Nano Oxidation Menendez et al. PRB 65, (2002)
34
Mie Model The dipolar approximation is a painting of the Nature
Magnetoplasmonics (I) - LSPR Mie Model The dipolar approximation is a painting of the Nature Physicist Plasmonist Magnetist Be a spherical non-interacting single domain cow Be a spherical cow with No friction Be a spherical non-interacting dipolar cow
35
Magnetoplasmonics (II) –Plasmonics in Magnetic nanostructures
LSPR in Ni nanorods Shape improves LSPR LSPR moves to IR Phase change allows observation of SPR Chen Small 7, (2011) 2341–2347
36
LSPR in Magnetic nanorods
Magnetoplasmonics (II) –Plasmonics in Magnetic nanostructures LSPR in Magnetic nanorods
37
Magnetoplasmonics (II) –Plasmonics in Magnetic nanostructures
LSPR in Ni nanorods Change of sign of the Phase above and below the SPR Novel concept o f sensing : Work with MOKE=0 Tunnability with the magnetic field Bonanni Nano Lett. 2011, 11, 5333–5338
38
Magnetoplasmonics (II) – Magnetoplasmonics in Plasmonics
LSPR in nanorods Interactions Photonic crystals Direct and SO modes Maccaferri Nano Lett. 2016, 16, 2533−2542 Kataja Nat Comm. 6 (2015) 7072 Maccaferri et al. PRL (2013) 111, Lodewijks Nano Lett. 2014, 14, 7207−7214 Zubriskyia Nano lett 15 (2015) 3204
39
Hybrid Magnetoplasmonics materials
Magnetoplasmonics (II) – Hybrid Magnetoplasmonics materials Hybrid Magnetoplasmonics materials Tunable optical properties Enhanced Magneto-optical signals NANO Enhanced anisotropy Magnetically active Plasmons Magnetic properties Plasmonics Proximity effects Multilayers Hetero-nanostructures Garnet based
40
Au NPs- Bi-YIG Magnetic films
Magnetoplasmonics (II) – Hybrid Magnetoplasmonics materials Garnet based Nanostructures Au-gratings on Bi-YIG films High transparency (in the IR) Difficult to be prepared Hybrid Au NPs- Bi-YIG Magnetic films Amplification of the MO signal Belotelov Nature Comm 4 (2013) 2128 SPR modes in gratings are controllec by MO signal Tomita PRL 96(2006) Fujikawa, JAP 103 (2008) 07D301 Plasmon assisted MO transparency
41
Iron oxide tetrapods & prisms
Magnetoplasmonics (II) – Hybrid Magnetoplasmonics materials Iron Hetero-nanostructures Gold-Iron oxide Heterodimers Gold-Iron oxide Flowers oxide ferrite shells Silver-Iron oxide Heterodimers Iron oxide tetrapods & prisms With a silver sphere Gold-Iron Alloy
42
Hetero-nanostructures, is it a good idea?
Magnetoplasmonics (II) – Hybrid Magnetoplasmonics materials Hetero-nanostructures, is it a good idea? Au Magn. Mater Most magnetic materials absorb in the VIS Heterodimers Red Shift and dumping of SPR! Problems in the reproducibility of the Nanostructures Shi, Nano Letters 6 (2006) 875 J Phys Chem 117 (2013) Velasco J. Phys. D Appl. Phys. 48 (2015) ; Luchini Phys. Chem. Chem. Physi.17 (2015) 6087
43
Magnetoplasmonics (II) – Hybrid Magnetoplasmonics materials
Fe oxide NPs 385 nm 421 nm 455nm 532 nm 633 nm 850nm Li Nano Letters 5 (2005) 1689 suPREMO Au ferrite shell Wang Nano Letters 11 (2011) 1237 Jain Nanoletters 9 (2009) 1644
44
Magnetoplasmonics (II) – Hybrid Magnetoplasmonics materials
Au- NPs Hetero-dimers Core-shell Dumping of plasmonic resonance
45
Au and Fe oxide Hetero-nanostructures
Magnetoplasmonics (II) – Hybrid Magnetoplasmonics materials Au and Fe oxide Hetero-nanostructures 10 nm 4 nm 20-24 nm 8-10 nm 1 nm 8 nm
46
Au and Fe oxide core@shell
Magnetoplasmonics (II) – Hybrid Magnetoplasmonics materials Au and Fe oxide 1 nm 1.5 nm 9 nm Pure plasmonics!!!
47
Au and Fe oxide core@shell
Magnetoplasmonics (II) – Hybrid Magnetoplasmonics materials Au and Fe oxide 10 nm 4 nm New transitions Sharp feature in the plasmon energy range Superparamagnetic AND strong diamagnetic response!
48
Au and Fe oxide Hetero-nanostructures
Magnetoplasmonics (II) – Hybrid Magnetoplasmonics materials Au and Fe oxide Hetero-nanostructures g-Fe2O3 CoFe2O4 CT : Charge transfer [Fe2+]t2g[Fe3+]eg ISCT: Intersublattice CF (Fe3+)t2[Fe3+]eg CT : [Co2+]t2g[Fe2+]t2g CF : Crystal Field 4A2 4T1(P) MO transitions depend structure and chemical properties BUT also on size and surface effects Correspondence between MO transitions and SPR
49
Magnetoplasmonics (II) – Hybrid Magnetoplasmonics materials
Multilayers Hybrid trilayers NM/MT/NM Very small! Au/air Dk/k×B = 10-6 Co/air Dk/k×M =10-4
50
Multilayers Magnetic field control of Plasmonics
Magnetoplasmonics (II) – Hybrid Magnetoplasmonics materials Multilayers Observation of Magnetic field SPP (Telmnov Nat. Photonics 4 (2010) 107) Magneto-plasmonic interferometer Telmnov Nat. Photonics 6 (2012) 728 Magnetic field control of Plasmonics Active Optoelectronics devices
51
Large MOKE signal due to the field induced modulation of ksp
Magnetoplasmonics (II) – Hybrid Magnetoplasmonics materials Multilayers Large MOKE signal due to the field induced modulation of ksp Safarov Phys Rev. Lett. 73 (1994) 3584; Herman Phys Rev B 64 (2001) Gonzalez- Diaz Phys. Rev. B 76 (2007)
52
Magnetic layer thickness Magnetic layer position
Magnetoplasmonics (II) – Hybrid Magnetoplasmonics materials Multilayers Magnetic layer thickness Increases MO contribution Increase Dumping Plasmonic materials Better Ag than Au But oxidation Magnetic layer position Better nearby surface But oxidation Quality of the films Epitaxial growth Decreases roughness and interdiffusion Improve magnetic properties Ferreiro-Vila Phys. Rev B. 83 (2011) ; Gonzalez Phys. Rev. B 76 (2007)
53
New MPs nanomaterials Trilayers NM/MT/NM
Magnetoplasmonics (II) – Hybrid Magnetoplasmonics materials New MPs nanomaterials Trilayers NM/MT/NM Au Co Au Films + Nanorods Honey ordered holes Nanorods
54
Applications Magnetoplasmonics (II) – Applications
Multifunctional Nanomaterials Biomedicine – Pharmacology- Catalysis Nanomaterials with Enhanced MO Signals Optoelectronics -Telecommunications Magnetic field active plasmonics devices Optoelectronics –Telecommunications Plasmon assisted magnetic recording Data Storage Sensors Separation Van Parys et al. APL 88 (2006) Constructive interferences non-reciprocal waveguide Destructive interferences +M MO material -M Mach-Zehnder interferometer
55
Applications- Chemical and biochemical sensors
Magnetoplasmonics (II) – Applications Applications- Chemical and biochemical sensors Magnetic field assisted ATR devices have higher sensibility than conventional ones! G. Armelles et al. Adv. Optical Mater., 1, 10–35, 2013 B. Sepulveda et al, Opt. Lett 31, 1085 (2006)
56
Applications- Sensors
Magnetoplasmonics (II) – Applications Applications- Sensors Air (n=1) Water (n=1.3) Gas sensors Biochemical sensors Au/Co/Au BK7 in air Au/Co/Au SF10 in water
57
Applications- Sensors
Magnetoplasmonics (II) – Applications Applications- Sensors Air (n=1) Water (n=1.3) Gas sensors Biochemical sensors BSA Au Surface MUA Anti Test with BSA and anti-BSA x8 S=155 RIU × 2 Sensibility of high quality Au layer Manera Sensors and Actuators B 179 (2013) 175
58
Applications- Sensors
Magnetoplasmonics (II) – Applications Applications- Sensors Maccaferri Nat. Comm. 6 (2015) 6150 Change of the 1/De with refraction index
59
I miss to speak on: Gratings , Antidots and other geometries
Magnetoplasmonics (II) – The end I miss to speak on: Gratings , Antidots and other geometries Magneto-plasmonics crystals Magneto-plasmonics in garnets, alloys and other materials Magneto-plasmonics in microwaves : Magnonics Dynamic of the plasmonic and magnetic materials Plasmonic and inverse Faraday effect Spin plasmonics Plasmon assisted demagnetization processes
60
P Mg Magnetoplasmonics is in the kickoff
Magnetoplasmonics (II) – The end Magnetoplasmonics P Mg Control of MO activity with plasmon excitation Control of plasmon properties with an external magnetic field is in the kickoff
61
The people Magnetoplasmonics Supported by N-Chem Univ. Pavia P. Ghigna
IMEM F. Vita F. Casoli S. Fabbrici F. Albertini P. P. Lupo (ex) INSTM – LAMM G. Campo E. Fantechi C. Innocenti A.Caneschi F. Pineider (Pisa) V. Bonanni (Milano) R. Novak (ex) L. Bogani (ex) CNR C. Sangregorio (ICCOM) L. Cavigli (ICCOM) R. Rella (IMM) M. G. Manera (IMM) Univ. Lecce D. Cozzoli Univ. Milano A. Lascialfari M. Scavini P. Masala CSIC- Spain ID-12 ESRF M. Garcia J. Palomares E. Paz A. Garcia- Martin A. Rogalev V. Wilhelm Supported by N-Chem Fondazione Cariplo FUTURO IN RICERCA
62
Thanks for your attention
63
Thiol capped Au- NPs Magnetic Materials Group IMEM-CNR
Magnetoplasmonics - Backstage Thiol capped Au- NPs Y. Yamamoto et al., Physical Review Letters 93, (2004). XMCD 10-4, MS/ML 0.14 P. Crespo et al., Physical Review Letters 93, (2004). Very recent: Huge Paramagnetism: Bartolomé Phys. Rev. Lett. 109, (2012) Magnetic Materials Group IMEM-CNR
64
Strong charge localization at the
Magnetoplasmonics (I) - Backstage Thiol capped Au- NPs Au NP Strong charge localization at the NP surface NO SPR
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.