Presentation is loading. Please wait.

Presentation is loading. Please wait.

 Y = sin x  Y = cos x  Complete the table for y = tanx 1 x-2π -3π 2 -π 2 0 π2π2 π 3π 2 2π y.

Similar presentations


Presentation on theme: " Y = sin x  Y = cos x  Complete the table for y = tanx 1 x-2π -3π 2 -π 2 0 π2π2 π 3π 2 2π y."— Presentation transcript:

1  Y = sin x  Y = cos x  Complete the table for y = tanx 1 x-2π -3π 2 -π 2 0 π2π2 π 3π 2 2π y

2 6.7

3 3 Algebra II x-2π -3π 2 -π 2 0 π2π2 π 3π 2 2π -π 4 Π4Π4 y

4 Use the unit circle to draw the graphs of the reciprocal function. 4 Algebra II

5 5

6 6

7 7

8 Period: π Domain: x ≠ πk/2, where k is an integer Range: (-∞, ∞) Y-intercepts: (0,0) X-intercepts: πk where k is an integer Where does y = 1: π/4+ πk Where does y = -1: -π/4 + πk No min, max, or amplitude 8 Algebra II

9 Period: π Domain: x ≠ πk, where k is an integer Range: (-∞, ∞) Y-intercepts: none X-intercepts: πk/2 where k is an odd integer Where does y = 1: π/4+ πk Where does y = -1: 3π/4 + πk No min, max, or amplitude 9 Algebra II

10 Period: 2π Range: (-∞, -1] U [1, ∞) x-intercepts: none y-intercepts: none Domain: x≠πk, k is an integer Relative Min values: (π/2 + 2πk, 1) Relative Max values: (3π/2 + 2πk, -1) 10 Algebra II

11 Period: 2π Range:(-∞, -1] U [1, ∞) x-intercepts: none y-intercepts: (0,1) Domain: x ≠ πk/2, k is an odd integer Relative Min values: (πk, 1) k is even Relative Max values: (πk, -1) k is odd 11 Algebra II

12 Y = A tan(kx + c) + h 12 Algebra II

13 Y = A sec(kx + c) + h 13 Algebra II

14 Y = A csc(kx + c) + h 14 Algebra II

15 Y = A cot(kx + c) + h 15 Algebra II

16 16 Algebra II


Download ppt " Y = sin x  Y = cos x  Complete the table for y = tanx 1 x-2π -3π 2 -π 2 0 π2π2 π 3π 2 2π y."

Similar presentations


Ads by Google