Presentation is loading. Please wait.

Presentation is loading. Please wait.

Sternentstehung - Star Formation

Similar presentations


Presentation on theme: "Sternentstehung - Star Formation"— Presentation transcript:

1 Sternentstehung - Star Formation
Sommersemester 2006 Henrik Beuther & Thomas Henning 24.4 Today: Introduction & Overview Public Holiday: Tag der Arbeit 15.5 Physical processes, heating & cooling, cloud thermal structure 22.5 Physical processes, heating & cooling, cloud thermal structure (H. Linz) 29.5 Basic gravitational collapse models Public Holiday: Pfingstmontag 12.6 Basic gravitational collapse models 19.6 Accretion disks 26.6 Molecular outflow and jets Protostellar evolution, the stellar birthline 10.7 Cluster formation and the Initial Mass Function Massive star formation, summary and outlook Extragalactic star formation More Information and the current lecture files:

2 M51: The Whirlpool Galaxy

3 M51: The Whirlpool Galaxy

4 Andromeda CO(2-1) Optical

5

6 Mid-Infared view of part of Galactic plane

7 Giant Molecular Clouds
Sizes: 20 to 100pc; Masses: 104 to 106 Msun; Temperatures: 10 to 15K Superesonic velocity dispersion ~2-3 km/s mainly due to turbulence Magnetic field strengths of the order 10mG Average local densities ~104cm-3; Volume-averaged densities ~102cm-3 --> highly clumped material

8 Sites of Star Formation
Optical Near-Infrared Masses: Between fractions and a few 100 solar masses Densities: Of the order 106cm-3 1.2 mm Dust Continuum C18O N2H+

9 Orion

10 The Star-Forming Region W43
Optical Near-Infrared 1.2mm dust cont.

11 Planck's Black Body

12 Planck's Black Body

13 Wien's Law max = 2.9/T [mm] Examples:
The Sun T 6000 K  max= 480 nm (optical) Humans T 310 K  max= 9.4 mm (MIR) Molecular Clouds T 20 K  max= 145 mm (FIR/submm) Cosmic Background T 2.7 K  max= 1.1 mm (mm)

14 Hertzsprung-Russel diagram
Main sequence: L=4pR2sbT Stefan-Boltzmann law

15 Hertzsprung-Russel diagram
Free-fall time scale: tff = (3p/32Gr)1/ > tff ~ 105 yr Contraction of protostar under gravity releasing energy as radiation: Virial theorem: Epot + 2Ekin = 0 --> Ekin = 0.5Epot = GM2/R ---> Kelvin-Helmhotz time scale: tKH = Ekin/L = GM2/RL ~ 107 yr for the sun r=105cm-3

16 Properties of Main Sequence Stars
Mass Sp. Type Lum Teff tMS [Msun] [log(Lsun)] [log(K)] [yr] O x106 O x106 O x106 B x107 B x108 A x109 G x1010 K x1010 M >1011 } greater than age of universe tMS ~ 5x10-4 Mc2/L = 1x1010 (M[Msun])/(L[Lsun]) yr

17 Sun The easiest to see in night sky and distant galaxies

18

19 The cosmic cycle

20 Properties of Molecular Clouds
Type n Size T Mass [cm-3] [pc] [K] [Msun] Giant Molecular Cloud Dark Cloud Complex x Individual Dark Cloud Dense low-mass cores Dense high-mass cores >

21 Molecules in Space atoms H C c-C3H C C5H C6H CH3C3N CH3C4H CH3C5N? HC9N CH3OC2H5 HC11N AlF C2H l-C3H C4H l-H2C4 CH2CHCN HCOOCH3 CH3CH2CN (CH3)2CO AlCl C2O C3N C4Si C2H CH3C2H CH3COOH? (CH3)2O NH2CH2COOH? C C2S C3O l-C3H2 CH3CN HC5N C7H CH3CH2OH CH3CH2CHO CH CH C3S c-C3H2 CH3NC HCOCH H2C HC7N CH+ HCN C2H CH2CN CH3OH NH2CH CH2OHCHO C8H CN HCO CH2D+? CH CH3SH c-C2H4O CH2CHCHO CO HCO+ HCCN HC3N HC3NH+ CH2CHOH CO+ HCS+ HCNH+ HC2NC HC2CHO CP HOC+ HNCO HCOOH NH2CHO CSi H2O HNCS H2CHN C5N HCl H2S HOCO+ H2C2O HC4N KCl HNC H2CO H2NCN NH HNO H2CN HNC3 NO MgCN H2CS SiH4 NS MgNC H3O+ H2COH+ NaCl N2H+ NH3 OH N2O SiC3 PN NaCN C4 SO OCS SO+ SO2 SiN c-SiC2 SiO CO2 SiS NH2 CS H3+ HF SiCN SH AlNC FeO(?) SiNC Currently 129 detected interstellar molecules (from November 2005)

22 The Interstellar Medium I
Atomic Hydrogen Lyman a at 1216 A o The 21cm line arises when the electron spin S flips from parallel (F=1) to antiparallel (F=0) compared to the Proton spin I. DE = 5.9x10-5 eV

23 The Interstellar Medium II
Molecular Hydrogen Carbon monoxide CO Formaldehyde H2CO Cyanoacetyline HC3N Excitation mechanisms: Rotation > usually cm and (sub)mm wavelengths Vibration > usually submm to FIR wavelengths - Electronic transitions --> usually MIR to optical wavelengths

24 The Interstellar Medium III
Ionized gas - H2 recombination lines from optical to cm wavelengths Emission lines from heavier elements --> derive atomic abundances He/H C/H x10-4 N/H x10-5 O/H x10-4 Si/H x10-6 - Free-free emission between e- and H+ cm mm submm

25 Interstellar dust: Extinction
Optical Near-Infrared Dust composition: Graphite C Silicon carbide SiC Enstatite (Fe,Mg)SiO3 Olivine (Fe,Mg)2SiO4 Iron Fe Magnetite Fe3O4 Size distribution: Between and 1mm n(a) ~ a (a: size) (Mathis, Rumpl, Nordsieck 1977) Extinction dims and reddens the light

26 S(n) = N (s/D2) Q(n) B(n,T)
Colour: MIR Contours: mm continuum Interstellar dust: Thermal emission S(n) = N (s/D2) Q(n) B(n,T) With N dust grains of cross section s at a distance D, a dust emissivity Q~n2 and the Planck function B(n,T). In the Rayleigh-Jeans limit, we have S(n) ~ n4 The thermal dust emission is optically thin and hence directly proportional to the dust column density. With a dust to gas mass ratio of ~1/100, we can derive the gas masses.

27 Dust polarization and magnetic fields
B Pol. E Dust Molecular filaments can collapse along their magnetic field lines. Polarized submm continuum emission

28 Star Formation Paradigm

29 Sternentstehung - Star Formation
Sommersemester 2006 Henrik Beuther & Thomas Henning 24.4 Today: Introduction & Overview Public Holiday: Tag der Arbeit 15.5 Physical processes, heating & cooling, cloud thermal structure 22.5 Physical processes, heating & cooling, cloud thermal structure (H. Linz) 29.5 Basic gravitational collapse models Public Holiday: Pfingstmontag 12.6 Basic gravitational collapse models 19.6 Accretion disks 26.6 Molecular outflow and jets Protostellar evolution, the stellar birthline 10.7 Cluster formation and the Initial Mass Function Massive star formation, summary and outlook Extragalactic star formation More Information and the current lecture files:


Download ppt "Sternentstehung - Star Formation"

Similar presentations


Ads by Google