Presentation is loading. Please wait.

Presentation is loading. Please wait.

DU power Principle diagram OM inventory Conversions VEOC behavior DU to network Pending issues mPMT-Bar.

Similar presentations


Presentation on theme: "DU power Principle diagram OM inventory Conversions VEOC behavior DU to network Pending issues mPMT-Bar."— Presentation transcript:

1 DU power Principle diagram OM inventory Conversions VEOC behavior DU to network Pending issues mPMT-Bar

2 Block diagram of the DU power network 400V switch 400V/12V 12V/ 1-5V OM 400V/12V 12V/ 1-5V OM 400V/12V 12V/ 1-5V OM 400V/12V 12V/ 1-5V OM 400V 0V Floor network VEOC ~8W ~190W ~1W <.5W ~7W (4%) 20 x OM = ½ mPMT-Bar

3 OM inventory Power / board Power conversion: 1 W OM logic:5.06 W 2 collection boards:0.14 W 31 PMT bases:1.09 W Contingency:1 W 8.18W 400V/12V conv..82W 9.00 W 2 switch decoder 3V3 switch Converter board 12+19 PMT-base cpld Signal collection board Storey- logic board ID Aux. electr. LVDS VEOC/ BOB photons HV apd 2 th dac pre- amp osc.1 hv dac feed back S i2c FPGA 380V 12V 5V 3V3 Aux. electr. SCOTT comp OM

4 Converter board Input 12V Output0.95 V – 2.11 A 1.5 V – 0.33 A 1.8 V – 4e-4 A 2.5 V – 0.06 A 3.3 V – 0.73 A -5 V – 0.2 A 5 V – 0.05 A 24 V – 0.01 A Depends of type of FPGA on OM logic board type of data protocol (SCOTT, BW, extra memory) demands of instrumentation Version 1 of the power conversion board based on NIK evaluation board ET - S.Mos

5 400V to 12V Purpose: provide galvanic barrier between OM and VEOC convert voltage from VEOC voltage to OM voltage provide over current protection 380V 12V Galvanic barrier fuse Principle: controller Disable startup current Feedback On > 350V off < 315V RectifierLoad pwr curr. volt Breakout Box outer shell DC/DC converter Fiber storage Optical & electrical connector to OM ET - P.Timmer A.Berkien, MT – GJ.Mul

6 Input current 0.1 V/A 200 mA/div @ 360 V Iav = 30 mA

7 Checked specifications in air @ 0.1 MPa V in ≥ 350 V switch on V in ≤ 315 V switch off V in nom.350 V< V in < 400 V Input polarity ;not sensitive I in fuse current500 mA @ 10 ms I in nom. 24 mA @ 360 V-8.5 W Spike suppres. input15 nF Max. start up load1000 µF + 26 W V out nom.11 V < Vout < 12 V V ripple < 100 mV I out switch off< 3 A peakreset @ Vin=0 T trafo switch off50 °C @ 1.5 Areset @ Vin=0 V isol. In-out4 kV, >1 kV/mm PCB, 4kV trafo f res @ start200 kHz f res @ nom. values65 kHz< f res <140 kHz P nom 0 W < P load < 18 W

8 Efficiency of 400V to 12V

9 Output stability versus peak current Load voltage 2V/div Load current Offset 0.5 A Peak 0.5 A Ground  V=2.5%  I=0.5A

10 400 V / 12 V Realisation v.01 Dimensions; OD 73mm H 25mm Secondary area 4 layer PCB

11 VEOC Vertical cable based on PBOF (pressure balanced oil filled) cable. Wire: 2 x 18 AWG, 600V Simulations on dynamic behavior: 400V/12V input Fuse voltage VEOC current OM input current VEOC inrush OM over- current

12 Node connection Simulations on dynamic behavior: Purpose: on/off switching DU over current switching DU communication over power wires 370-400 V- 1 A, Pnom=200W Principle: Switch on by voltage limit Switch off by Over current Reset by command Switch off By command Network (HEOC) voltage VEOC voltage VEOC current ET - P.Timmer Status: proto type tested No part of DU !

13 Pending OM power board Definitive power inventory = New design 400V/12V Optimize efficiency for definitive load specifications Thermal graphic measurement Oil / pressure tests Lifetime tests Conformal coating Node connection Choice of connector Work out of node electronics (WP H/M?) VEOC Wire Choice of number of cable / DU Diameter


Download ppt "DU power Principle diagram OM inventory Conversions VEOC behavior DU to network Pending issues mPMT-Bar."

Similar presentations


Ads by Google