Presentation is loading. Please wait.

Presentation is loading. Please wait.

토양과 질소 순환 2007. 11. 22.

Similar presentations


Presentation on theme: "토양과 질소 순환 2007. 11. 22."— Presentation transcript:

1 토양과 질소 순환

2 주요 내용 질소화합물 The Nitrogen cycle The Nitrogen Fixation
The Nitrogen Immobilization The Nitrogen mineralization Ammonification Ammonia volatilization Nitrification 질산화 세균 질산화 작용 정량화

3 주요 내용 (계속) Soil condition and nitrification
Artificial inhibition of nitrification 질산태 질소의 소비과정 Nitrate reduction 미생물에 의한 질산염 이용과정 탈질작용 Leaching and erosion Nitrogen deposition and saturation Principles of efficient N management

4 서론 식물에서 차지하는 원소 비율 (탄소> 수소> 산소> 질소) 3대 비료성분 중 하나(농업 생산성 제한요인)
N2O(gas), NO3-(aq) → 환경문제 유발 1970년대 이전: 질소고정은 농업생산력과 직결 1970년대: 비료(육상) 유입된 NO3- 문제 수질관리→유아 청색증, 부영양화, 대기관리→산성비, 암모니아 과잉 1980년대 후반: 탈질과정 연구(N2O gas 오존층 파괴, 온실효과) 1990년대 질소 침적과 과잉 문제

5 Nutrient Deficiency Symptoms on Agronomic Crops
1. Nitrogen Deficiency Symptoms Stunted, yellowish plants. Older leaves or whole plants are yellowish green.  cone coffee (출처: 김영일 찾음.

6 2. Phosphorus Deficiency Symptoms
P-deficient plants are stunted with greatly reduced tillering. Leaves are narrow, short, very erect, and “dirty” dark green .  cone sorghum (사탕수수) (출처:

7 3. Potassium Deficiency Symptoms
Under severe K deficiency, leaf tips are yellowish brown. Upper leaves are short, droopy, and “dirty” dark green alfalfa apple (출처:

8 토양 질소와 생산성 Rothamsted Experimental Station 에서 1994년 7월 27일 찍음.

9 토양 시료 장기 저장 창고 Rothamsted Experimental Station 에서 1994년 7월 27일 찍음.

10 Cole, J. J. , B. L. Peierls, N. F. Caraco, and M. L. Pace. 1993
Cole, J.J., B.L. Peierls, N.F. Caraco, and M.L. Pace Nitrogen loading of rivres as a human-driven process. Pp In: M.J. McDonnell and S.T.A. Pickett (eds.) Humans as Components of Ecosystems. Springer, New York.

11 Fig. Extent of human alteration of the global biogeochemical cycle of nitrogen.
Vitousek, P.M Beyond global warming: Ecology and global change. Ecology 75:

12 질소화합물 Formula Name Comments NH3 NH4+ NH2 N2 N2O NO NO2 - NO2 NO3 -
oxidation number Comments NH3 NH4+ NH2 N2 N2O NO NO2 - NO2 NO3 - N2O3 N2O4 N2O5 Ammonia Ammonium ion Amino group Nitrogen gas Nitrous oxide Nitric oxide Nitrite ion Nitrogen dioxide Nitrate ion Dinitrogen trioxide Dinitrogen tetroxide Dinitrogen pentoxide -3 -1 +1 +2 +3 +4 +5 Major nutrient form From NH3 dissolved in water Constituent of protein Bulk of atmosphere Laughing gas, controls natural ozone cycle Combustion product Link in N cycle From NO oxidized in atmosphere Principal nutrient form 청색 고체 갈색 무색 자료: Ehrlich, P.R., and J. Roughgarden The Science of Ecology. Macmillan Publishing Co., New York. p.558     Oxtoby, D.W., and N.H. Nachtrieb. Principles of Modern Chemistry.

13 Nitrogen cycle Ammonification (slow process) Nitrification
(rapid process) Mineralization Assimilation Organic N NH3 NH4+ NO2- NO3- ammonia Ammonium ion Nitrite ion Nitrate ion N process ① Ammonification ② Nitrification ③ Denitrification ④ Assimilation ⑤ NH4+ fixation ⑥ NO3 fixation ⑦ N2 fixation

14 - 남명언 제공

15 The Nitrogen cycle (source: 미국 NASA ( 이지윤 제공

16 Ocean N cycle Rain(20) Lightning (3) Rainfall(30) Human Activity
Factory Rain(20) Forest 1200 Lightning (3) Denitrification(200) Runoff(36) Fixers Ocean Burial 10 Denitrification(110) Rainfall(30) Fixers(15) 140 BNFhuman=40 BNFnatural=100 80 Human Activity (Units : 1012 g N/year) N cycle (Source : 미국 West Virginia University ( 이지윤 찾음

17 토양권에서 질소의 형태 변화와 세균 질소의 형태변화 반응 명칭 관여 세균 질소기체→암모니아 →아미노산 유기질소 → 암모니아
암모니아 → 유기질소 유기질소 → 무기물 암모니아 → 질산 질산 → 가체질소 공생적 질소고정 질소고정(독립성) (독립성) 무기화작용 유기화(동화)작용 질산화작용 탈질작용 뿌리혹 박테리아(콩과식물) 아조토박터, 클로스트리듐 남조류 등 대부분의 종속영양균 셀룰로오즈와 리그닌 분해균 등 다수의 종속영양균 질산균 탈질균 참고문헌: 김종흡 옮김 신비롭고 고마운 토양권. 전파과학사

18 Sizes of Global N Reservoir
Reservoir/Pool Type  Biosphere   Hydrosphere   Atmosphere   Geosphere        Crust             Soils and Sediments        Mantle and Core   Metric Tons 2.8 x x x x x x x 1017 % of Total      0.0002       0.014       2.3     97.7                     95.6  - The bulk of the N (about 98%) exists in the geosphere, and most of the remainder is found in the atmosphere. Compared with the other spheres, the hydrosphere and biosphere contain relatively little N, but the N in the biosphere is highly reactive and is rapidly cycled. The inorganic N species ammonium (NH4+), nitrite (NO2-), and nitrate (NO3-) are highly water soluble, and are distributed in dilute aqueous solution throughout the hydrosphere. Living and dead organic matter also provide actively-cycled reservoirs of N. Soil organic matter (humus) is a substantial and relatively stable N reservoir in temperate climates. (출처 : 2002 Illinois State Water Survey ( 이지윤 찾음

19 Summary of N Cycle ㅇ Largest active pool = N2 in atmosphere which is 181x > amount in ocean ㅇ N in soil organic matter is 27x > amount in terrestrial biota ㅇ Largest flux = uptake by plants of which almost all is from recycled organic N ㅇ Human activities ≈ 60% of total input to land ㅇ river flow ≈ 40% total input to ocean (source : 미국 West Virginia University ( 이지윤 찾음

20 Nitrogen Fixation Bray & Weil 2002

21 이천용 1992

22 Nitrogen Fixation 질소고정식물에서 균근형태 이천용 1992. 산림환경토양학. 보성문화사 과 속 균근형태
Betulaceae Alnus  Ecto M., VAM. Casuarinaceae Casuarina VAM. Cycadaceae Cycas Myricaceae Comtonia Myrica Elaeagnaceae Elaeagnus Hippophae Shepherdia Rhamnaceae Ceanothus Colletia Discaria VAM. ? Leguminosae Herbaceous Woody Rosaceae Cercocarpus Dryas Purshia Rubus Coriariaceae Coriaria Ulmaceae Parasponia 질소고정식물에서 균근형태 이천용 산림환경토양학. 보성문화사

23 Part of a clover root system bearing naturally occurring nodules of Rhizobium. Each nodule is about 2-3 mm long. Clover root nodules at higher magnification, showing two partly crushed nodules (arrowheads) with pink-coloured contents. This colour is caused by the presence of the pigment leghaemoglobin - a unique metabolite of this type of symbiosis. Leghaemoglobin is found only in the nodules and is not produced by either the bacterium or the plant when grown alone.

24 Part of a crushed root nodule of a pea plant, showing four root cells containing colonies of Rhizobium. The nuclei of two root cells are shown; cw indicates the cell wall that separates two plant cells. Although it cannot be seen clearly in this image, the bacteria occur in clusters which are enclosed in membranes, separating them from the cytoplasm of the plant cells. -남명언 제공

25 Alder and the other woody hosts of Frankia are typical pioneer species that invade nutrient-poor soils. These plants probably benefit from the nitrogen-fixing association, while supplying the bacterial symbiont with photosynthetic products. -남명언 제공

26 Nitrogen fixing organisms: representative symbiotic bacteria.
Bradyrhizobium japonicum An electron micrograph of B. japonicum cells. soybean nodule containing B. japonicum that has been cut open (left), and a nodulated soybean plant (right). 성소영 찾음

27 Rhizobium trifolii Rhizobium in Soil Rhizobia on Root Hair Tip
Nodulated subclover plant (Trifolium subterraneum). Rhizobia on Clover Root Hair Microbes inside the root of an aquatic plant 성소영 찾음

28 Mechanism of biological nitrogen fixation
                                                              N2 + 8H+ + 8e ATP = 2NH3 + H2 + 16ADP + 16 Pi This reaction is performed by prokaryotes (the bacteria and related organisms), using an enzyme complex termed nitrogenase. This enzyme consists of two proteins - an iron protein and a molybdenum-iron protein. The reactions occur while N2 is bound to the nitrogenase enzyme complex. The Fe protein is first reduced by electrons donated by ferredoxin. Then the reduced Fe protein binds ATP and reduces the molybdenum-iron protein, which donates electrons to N2, producing HN=NH. In two further cycles of this process (each requiring electrons donated by ferredoxin) HN=NH is reduced to H2N-NH2, and this in turn is reduced to 2NH3. (source : 영국 The University of Edinburgh ( 이지윤 찾음

29 Nitrogen Immobilization
Immobilization involves the assimilation of inorganic N (NH3, NH4+, NO2-, NO3-) by soil microorganisms and the transformation of these mineral forms of N into organic compounds during microbial metabolism and growth. Plant uptake can also be viewed as a form of immobilization (Pierzynski et al. 1994).

30 glutamate dehydrogenase pathway
   α-케토클루타믹산에 NH4+ 를 첨가하여 글루타믹산 생성 이도원 & 조병철 1996

31 glutamine synthetase-glutamin synthase pathway -do not require ATP
이도원 & 조병철 1996

32 Nitrogen mineralization
+2H2O +O2 +½O2 R-NH2 OH- + R-OH + NH4+ 4H+ + energy + NO2- energy + NO3- -½O2 -2H2O -O2 Immobilization

33 생물체 내에서 질소 단백질 세포벽 구성요소(키틴, 펩티도클루칸) 핵산 분해효소: proteinase and peptidases (peptide bond에서 특수한 아미노산 사이를 잘라냄) serine proteinase-trypsin, subtilisin Sulfhydryl proteinase – papain Acid proteases – pepsin 토양 미생물 C:N ratio 일반적으로 5:1~8:1, i.e., 45% C, 6~9% N fungi 4.5:1~15:1, i.e., 45% C, 3~10% N bacteria 3:1~5:1 토양 유기물 C:N ratio 일반적으로 10:1 – SOM은 비단백질 성분 포함 암시 C:N > 25 → 순부동화 (net immobilization) 40% C, 1.6% N C:N < 25 → 순무기화 (net mineralization)

34 Model of N mineralization
The rate of mineralization is proportional to the amount of substrate. dN/dt = -kN where k: an empirical constant Nt: the remaining amount of mineralizable N at time t N0: initial amount of mineralizable N, Intergrating N= N0 at t=0 to N= Nt at t=t Nt = N0 e-kt The amount of N mineralized N through time t (Nm) is given by Nm = N0-Nt =N0(1-e-kt)

35 Temperature and moisture vs k (Pierzynski et al. 1994, Table 4.2)
Sometimes, a model based on two pools of N (Nr = readily decomposable organic N and Ns = slowly decomposable organic N) with separate rate constants for mineralization of each pool (h for Nr and k for Ns) better describes the results of N mineralization studies, particularly for waste-amended soils (Pierzynski et al. 1994).         Nm = Nr(1 - e-ht) + Ns(1 - e-kt) When there are many compartments of N, a similar approach is applicable.

36 a괄호 안의 숫자는 이도원, 조병철(1995) 그림 8.6 에서 나타난 집소번호이다.
표 *. 토양에서 짚의 분해(1,000μg C g-1)에 대한 탄소-질소 대사회전모형에 사용된 집소 크기(pool size), 분해상수 k 값, 미생물 생산 효율. 단위 (pool) 잔류탄소 (μg g-1) 분해율 k (day-1) 효율(%) 잔류질소 C:N 비 쉽게 분해될 수 있는것(1)a 150 0.2 60 25 6 서서히 분해될 수 있는것(2) 650 0.08 40 12 54 리그닌과 내재된 질소(3)b 200 0.01 10b 3 67 분해가능한 미생물의 생산물(4)c 0.8 1 완전히 보호된 토양 유기물(5) 5000 3 x 10-4 20 555 9 오래된 유기물(6) 7000 8 x10-7 700 10 분해되기 어려운 미생물과 식물의 물질(7) 4 0.3 NH4+ + NO3- _ N(8) - a괄호 안의 숫자는 이도원, 조병철(1995) 그림 8.6 에서 나타난 집소번호이다. b리그닌의 50% 는 분해되기 어렵고, 보호되지 않은 미생물과 식물의 물질 집소로 유입된다. c생물량의 실질적 단위의 크기는 매우 더 크다. 이들 표현된 단위들의 크기는 짚 으로부터 산출됐다. 생물량을 보호하기 위한 토양 보존 능력은 장기간의 현장  모형에 적용될 수 있다.

37 Ammonification 정의: 아미노산 → NH3 토양에서 암모니아의 운명
(Paul & Clark 1989, Vitousek & Melillo 1979) ① 식물흡수 ② 미생물 흡수 ③ 이온교환 ④ 점토 격자 사이에 고정 ⑤ 토양유기물과 반응하여 안정화 ⑥ 휘산 ⑦ 질산화작용 ⑧ 용탈과 침식

38 Ammonia volatilization
Ammonia volatilization refers to the loss of NH3 from the soil as a gas and is normally associated with high free NH3 concentrations in the soil solution and high soil pH (Pierzynski et al. 1994).

39 NH4+ <─>(NH3) solution + H (NH3) solution <─> (NH3) gas
Volatilization represents both the loss of a plant nutrient and a potential environmental impact of N, as studies have shown that nearby surface waters can be enriched by NH3 volatilized from areas where organic wastes are concentrated (e.g., feedlots, manure lagoons). NH4+ <─>(NH3) solution + H         (NH3) solution <─> (NH3) gas d[NH3]/dt = [A] x [K] x [Pl - Pg] where d[NH3]/dt= loss in time (t) A = Area of soil-solution interface K = Mass transfer coefficient, a function of air velocity above the soil and their air and soil temperature Pl = Partial pressure of NH3 in soil solution Pg = Partial pressure of NH3 in air above soil solution

40 The key factors in the volatilization of NH3 from soils.
1.The transfer of gas between the soil solution and the atmosphere. 2. The general rate of a chemical reaction. Those are governed by temperature, moisture, texture, pH, and CEC; nature of N source; and methods of application of fertilizers or organic wastes (e.g., surface broadcast, injected, incorporated).

41 Nitrosomonas bacteria
Nitrification NH4+ NO2- Step 1 + 1½O2 2H+ 2H2O- 275 kJ energy Step 2 ½O2 NO3- 76 kJ energy Nitrosomonas bacteria Nitrobacter bacteria Ammonium Nitrite Nitrate Brady & Weil 2002, p552    Nitrosomonas                       NH4+ + O2 + H+ + 2e > NH2OH + H2O     65 kcal per mole                        hydroxylamine NH2OH + H2O   > NO2 + 5H+ + 4e- hydroxylamine           nitrite         Nitrobacter         NO2 +  H2O  --> H2O N2O-  ----> NO3- +  2H    18 kcal per mole nitrite                       nitrate

42 Nitrification is associated with the production of hydrogen ions (H+) and these protons are a source of acidification (Killham 1994). Although nitrification can occur under anaerobic or microaerophilic conditions (Poch and Focht 1985), high rates of nitrification are generally associated with strongly aerobic conditions (Focht and Verstraete 1977, cited by Groffman 1991).

43 질산화 세균 화학적 독립영양세균으로 그램 음성균인 Nitrosomonas 와 Nitrobacter 에 의해서 주로 수행된다.
근래에 곰팡이와 종속영양세균에 의해서 일어나는 질산염이 특히 산성삼림토양에서 많이 발견되고 있다(Killham 1994). 이도원 & 조병철 1996

44 질산화 작용 정량화 대부분 실험실에서 암모니아를 토양에 첨가하고 아질산염과 질산염으로 산화되는 속도를 측정함
확산을 도모하기 위해 토양반죽(slurry)를 만드는데 실험체계가 혐기성 상태로 되어 탈질화작용이 일어나는 문제점이 발생하기도 함.

45 Soil condition and nitrification
반응물질인 암모니아 이온의 이용도와 반응에 관여하는 미생물의 활동에 관여하는 모든 요소는 토양에서 질산화작용에 영향을 미치게 된다. ① 암모니아 수준, availability of substrate, NH4+ ② 통기, oxygen availability ③ 온도 ④ 수분 Soil water, which is a strong controller of O availability in soil, is also a strong field-scale controller of nitrification (Groffman 1991) ⑤ 치환성 염기

46 ⑥ pH - 단백질, 즉 효소 구조 변화 denaturation of enzyme - 높은 pH 에서 NH4+ + OH- ---> NH3 + H2O 반응으로 unionized ammonium 생성으로 억제하여 아마 NH4+ 형태로 질산화세균에 흡수 이용될 것(Wong-Chong and Loehr 1978). - 근래에 산성비와 대기로부터 질소의 과잉공급(Aber 등 1989)으로 발생하는 토양 산성화를 억제하기 위해 삼림에 석회를 첨가하면 무기화의 촉진으로 질산염이 과잉 공급되며, 동시에 용탈이 가속되어 영양소 유실과 부영양화 유발된다* - 낮은 pH 에서 질산화작용 미소서식지이론(micro-habitat theory) - 표면흡착, 점액 생산, 무기화 부위 근접 위치 등의 기작으로 낮은 pH에서 보호 산적응 질산균 -

47 ⑦ C/N 비 - 산성화 및 질소 과잉 문제와 관련하여 톱밥과 같은 높은 C/N 비의 유기물 첨가는 삼림토양의 완충력을 고양하고 미생물 흡수로 질산화작용에 의한 질산염 용탈을 방지한다 (Lee et al. 1996). 아울러 질소과잉 상태에서 이용가능한 유기탄소의 부족으로 탈질작용이 제한되는 경우가 많기 때문에 톱밥첨가는 탈질작용을 1000배나 증가시키는 경우도 있다(Schipper et al. 1994, Schipper 1996). ⑧ 시비 ⑨ 농약

48 억제물질 생산(Rice and Pancholy 1973.) - e.g., 탄닌 NH4+ 이용도 감소(Vitousek?)
At landscape scale, soil type (texture and drainage), which is a strong controller of organic matter levels, moisture dynamics, and N mineralization (Groffman 1991). Plant community patterns are often strongly related to N availability (Pastor et al. 1984). 삼림토양에서 천이와 함께 질산화 작용이 억제되는 까닭은? 억제물질 생산(Rice and Pancholy 1973.) - e.g., 탄닌 NH4+ 이용도 감소(Vitousek?)

49 Nitrification and Ca leaching
Brady & Weil 2002 재인용

50 Artificial inhibition of nitrification
과잉 질산염, 아질산염이 일으키는 문제 질소 유실과 수계의 부영양화 청색증(blue-baby, Methaemoglobinaemia) (NO3-N  -> NO2-N+헤모글로빈 -> Methemoglobin 형성 ->산소부족-> Blue Baby) 니트로자민(발암물질) 생산 (nitrite 첨가한 물질섭취시 위장에서 발생하는 발암물질)   R2NH      +      NO2-  > R2N-NO  +  OH- secondary amine   nitrite > nitrosamine 질산염이 유동적이기 때문에 질소손실을 방지하는 방안으로 질소비료에 껍질을 씌우는 방안(e.g., sulfur-coated urea)아 함께 질산화작용 억제가 제안

51 질산태 질소의 소비과정 Production of nitrous oxide during nitrification
① Intermediates between NH4+ and NO2-, or NO2- itself, can chemically decomposed to N2O, especially under acid conditions (Ritchie and Nicholas 1972, cited by Groffman 1991). ② Nitrifying bacteria can also produce N2O by reduction of NO under anaerobic or microaerophilic conditions (Poth and Focht 1985). Nitrification is often considered to be the dominant source of N2O in ‘aerobic’ soils (Bremner and Blackmer 1978, Sahrawat and Keeney 1986). Vitousek & Melillo 1979 참조

52 Nitrate reduction dissimilatory assimilatory biotic absorption
dissimilatory nitrate reduction to ammonia - fermentation nitrate respiration denitrification assimilatory biotic absorption

53 미생물에 의한 질산염 이용과정 동화작용 질산염이 단백질 구성성분으로 이용되는 경우 질산염 암모니아 아미노산 단백질
      질산염 암모니아 아미노산 단백질 흡수, 환원 (81.6Kcal/mol)

54 nitric oxide reductase
이화작용: 탈질작용 질산염이 에너지 생성을 위한 최종 전자수용체로 사용되는 경우 Nitrate Gas (NO3-) Nitrite (NO2-)  nitric oxide (NO) nitrous oxide (N2O) Dinitrogen (N2) nitrate reductase Nitrite reductase  nitric oxide reductase  nitrous reductase 이상에서 최소한 하나의 환원효소(즉,  또는 환원효소)를 가지고 있는 미생물을 탈질균(denitrifier) 이라고 부르며, 이들은 무산소조건(anoxic condition: 분자 상태의 산소가 없는 조건)에서도 살 수 있다.

55 탈질작용 정의 Denitrification refers to anaerobic respiration and reduction of NO3- and NO2- to N gases (NO, N2O, and N2) by organisms that normally use O2 for respiration.

56 이도원 & 조병철 1996 이도원 & 조병철 1996

57 여러 가지 연구규모에서 탈질활동을 조절하는 요인들(Groffman ????)
연구 규모 조절요인 유기체 야외토양 경관 광역 전지구 산소, 질산염, 탄소 토양수, 질산염공급, 탄소공급 토양형태, 식물군집형태 지형, 토지이용 생물군계, 기후

58 이도원 & 조병철 1996

59 전체 방출되는 질소의 반 이상을 아미노산과 아미노 당류 형태로 방출
산성을 띤 아미노산(아스파르트, 글루탐산)은 열대 토양에서 증가하는 듯 하나 일반적으로 전세계 토양 범위에 걸쳐 아미노산 구성은 유사 이도원 & 조병철 1996

60 1. Purification of riparian buffer strips
Riparian buffer strips = vegetative filter strips They are designed to remove sediment, organic material, nutrients, and chemicals carried in runoff or waste water. Vegetative filter strips increase wildlife habitat. 출처 : 강서병 찾음

61 식생완충대와 질소제거 Brady & Weil 1999 에서 재인용

62 Leaching and erosion Nitrogen can be transported from soils into ground waters and surface waters by leaching and erosion. Losses of N by leaching occur mainly as NO3- because of the low capacity of most soils to retain anions. The leaching loss of N is proportional to the concentration of NO3- in the soil solution and the volume of leaching water (Pierzynski 등 1994, p.71).

63 Erosion refers to the transport of soil from a field by water and wind
Erosion refers to the transport of soil from a field by water and wind. Both processes can transport soluble and insoluble N to aquatic systems and contribute to the process of eutrophication or drinking water contamination. Most of the N lost by erosion or runoff is sediment-bound organic N. Total N losses from most watershed studies are usually several fold greater than soluble N. The use of grassed waterways or border strips that trap sediment and accumulate soluble N in plant biomass can help reduce N losses. For instant, a cornstalk residue strip 2.7 m wide with 50% ground cover reduced sediment and total N losses by 70~80% (Pierzynski 등 1994, Table 4.4).

64 Nitrogen deposition and saturation

65 Atmospheric nitrogen depositions on Lake Sihwa, South Korea
Gangwoong Lee, Yuwoon Jang Hankuk University of Foreign Studies Meehye Lee Korea University Seonghyun Kahng Korea Ocean Research and Development Institute Dowon Lee Seoul National University

66 2. Location of Siwha lake <May, 1999 > < May, 1987 >
SEOUL 강서병 편집 < Multi-tecno valley > 출처 : 환경정책평가연구원 <May, 1999 > < May, 1987 > 출처 : 한국수자원공사

67 Present Surroundings of Lake Sihwa
자료제공: 한국외국어대학교 이강웅

68 3. Background of Siwha Lake
Time Main contents Construction was started. Siwha seawall construction was started. Siwha seawall construction was ended. Siwha lake and tideland were created. Siwha 1 stage project will be ended. Siwha 1 stage extension complex project (Multi-techno valley project) will be started.

69 Sampling Sites for Atmospheric Deposition
JA DB HM 자료제공: 한국외국어대학교 이강웅

70 Wet and Dry Sampler Dry deposition bucket Wet deposition bucket
Precipitation frequency Precipitation duration 자료제공: 한국외국어대학교 이강웅

71 Annual variations of Nitrate Depositions
Wet deposition Dry deposition 자료제공: 한국외국어대학교 이강웅

72 Annual Variations of Ammonium Deposition
Wet depostion Dry deposition 자료제공: 한국외국어대학교 이강웅

73 N deposition data Region and Property N deposition Sihwa 2.4 (1.7-3.3)
(Wet + Dry, g N m-2 year-1 ) Region and Property N deposition Sihwa 2.4 ( ) Tahoe Lake (USA) Wyoming (forest, snowy area) 0.36 Tampa Bay Coastal (Eutrophication) 0.7 Denmarks’s Kattegate sea 0.9 S. Nevada (moderately polluted) Forest near Barcelona (Industiral) Denmark’s Land 1.7 S. Nevada (Very Polluted) South Pennines, UK (Industiral) Wales, UK (Industrial) 자료제공: 한국외국어대학교 이강웅

74 Nitrogen Budget in Lake Sihwa
Runoff Atmospheric Input Output by NH3(?) Outflow To Sea (?) Sedimentation (?) Lake Sihwa 39.4 Ton/Week 2.1 Ton/Week 22.9 Ton/Week 자료제공: 한국외국어대학교 이강웅

75 Principles of efficient N management
Nitrogen efficiency for a soil-plant system can be viewed as the ability to manage the time, energy, and resources needed to obtain an acceptable level of plant growth (the task) with minimal loss of N (the waste).

76 Yield efficiency and Recovery efficiency
Yield efficiency (YE) =        ([Crop yield]+N source - [Crop yield]Soil alone) / Total N added by N source Nitrogen recovery efficiency (NRE) =        ([Crop N uptake]+N source - [Crop N uptake]Soil alone) / Total N added by N source

77 While, generally speaking, YE and NRE decrease and the potential for N loss to other ecosystems increases as N rate increases, the percentage of applied N that is not recovered by the crop definitely depends on the amount of N used (Pierzynski 등 1994).

78 Improving the efficiency of N management will require an integrated approach, often regional in nature. Traditional approaches have combined the development and implementation of research-based best management practices (BMPs) for soil conservation and nutrient management with long-term basic research to alter fundamental aspects of the N cycle (Pierzynski 등 1994, Table 4.9).

79 Sewage treatment plant
4. System of Green area and stream Sewage treatment plant Green area Stream 출처 : 한국수자원공사, 강서병 찾음

80 5. Design of wetland types in green area
Plants are concentrated at mounted buffer zones with top soil. Construct wetlands where reeds are planted and islands are included for wildlife habitat. Plants pattern : forest with variable layers Change the surface level so that it decreases cost of construction. 강서병 그림 Buffer zone wetland Island Buffer zone Previous plan Proposed level

81 6. Design of street side’s green area
Separate curbs by 1m intervals to allow flow of storm water from street to green area. Flow continuously treated water from sewage treatment plant at the stream Plant aquatic plants at the stream. Previous plan Proposed level 강서병 그림

82 Addional readings Silver, W.L., A.W. Thompson, A. Reich, J.J. Ewel, and M.K. Firestone Nitrogen cycling in tropical plantation forests: potential controls on nitrogen retention. Ecol. Appl. 15:


Download ppt "토양과 질소 순환 2007. 11. 22."

Similar presentations


Ads by Google