Download presentation
Presentation is loading. Please wait.
1
Introduction to Mineralogy Dr
Introduction to Mineralogy Dr. Tark Hamilton Chapter 15: Lecture 33-b Systematic Mineralogy Chemistry of Sulfides Camosun College GEOS 250
2
Mineral Chemical Classification
Families based on chemical types: Silicate, Sulfide, Element Groups: Similar structures e.g rhombohedral carbonates, orthorhombic pyroxenes Series: Common structure & related cation substitutions e.g. Augite-Hedenbergite Pyroxenes, Pyrope-Almandite-Spessartite Garnet Species: A single mineral with 1 structure, definite composition Calcite, Gold Varieties: Unusual colours, chemical substitutions, analyses Chromian (Cr+3) diopside, Ferrian (Fe+3) annite, Manganoan (Mn+2) Calcite, Quartz (var. Adventurine, Amethyst, Citrine etc.)
3
Crystal Structure of Native Elements
Weak Metallic Bonding: Closest pack array of metal ~cations + Conduction band electrons shared as a uniform crystal field Few Common Lattice Types: 4 points-FCC-12 cn, HCP, 2 points BCC-8 cn 12-fold coordination: || {111} plane, 3-fold axis
4
Native Sulfur Crystals – Orthorhombic Dipyramidal 2/m 2/m 2/m
fig_15_13
5
Native Sulfur: Orthorhombic 2/m2/m2/m
Stable < 95.5°C fig_15_03 1.5<H<2, s.g.=2.07, resinous greasy Dipyramidal Fddd, Z-128, Impurities Se, Te Colour: yellow-green-orange Fair Cleavages: (001), (110), (111) Brittle, sectile, uneven to choncoidal fracture Occurences: widespread, fumaroles, hotsprings, coals, petroleum deposits, sulfide ores S 15 mm with Bitumen in Aragonite Cozzo Disi Mine, Sicily, Photo: Rui Nunes 2006
6
Covalent-Network Solids
Diamonds are an example of a covalent-network solid in which atoms are covalently bonded to each other. They tend to be hard and have high melting points Diamond 3550°C. Stable >105 Atm. Graphite only melts > 100 Atm, then 4227°C! Fullerenes from meteorite impacts, soot, low P
7
Native Carbon: Diamond BCC, Graphite Hexagonal, Fullerenes Nets
Diamond: 4/m32/m Hexoctahedral, Z=8 (BCC=4, stuffed), a = Ǻ V=45.10 Ǻ3, not close packed 34% space used (64% open space) s.g.=3.53, H=10, R.I.=2.435, Octahedrons perfect (111) cleavage densest planes Greasy-Adamantine Lustre, Strain Birefringence common, Strong colour dispersion, fluid and mineral inclusions common Geological Occurrence: High Pressure Mantle Rocks: Inclusions of Eclogite, Garnet Peridotite with Cr-Pyrope, Cr-Spinel, Cr-Diopside, Forsterite, Enstatite as inclusions in Kimberlite, Lamproite dykes and pipes, Placers therefrom, residual in sands, microdiamonds from impact sites Graphite: 2H form: Dihexagonal dipyramidal 6/m2/m2/m, Perfect (0001) basal cleavage, a=2.463 Ǻ, c=6.714 Ǻ, Z=4, Volume = ų 3R form: Trigonal (Hexagonal scalenohedral) 32/m, a=2.456 Ǻ, c= Ǻ, Z=6, Volume = ų, 1<H<2, Iron black-steel grey, greasy, 1<H<2, greasy, micaceous fracture, flexible platelets, 21% of space is filled! Geological Occurrence: metasediments, veins, pegmatites Fullerite: Vitreous, amorphous, H=3.5, Basaltic pipe Tajikistan Other Polymorphs: Chaoite 6/m2/m2/m meteorite black layered with graphite, Lonsdaleite 7<H<8 transparent, impact crater in Russia fig_15_04 (111) horizontal plane for both
8
Native Carbon: Diamond BCC, Graphite Hexagonal, Fullerenes Nets
Diamond: 3 catat octahedral brown Diamond Ekati Mine, Lac de Gras, NWT, M. Roarke 2006 Mindat. Graphite: Hexagonal crystal ( cm) Kimmurut, Baffin Island NWT, Rob Lavinsky, Mindat. Chaoite: Grey mass 15mm in Suevite impact breccia, Ries, Germany, J.F.Carpenter 2007 Mindat. Other Polymorphs: Lonsdaleite, Fullerite
9
Variation in Natural Diamond Crystals:
a)Octahedron plus Tetrahexahedron (8 equilateral triangle faces + 24 isosceles faces) b) Hexoctahedron (24 right triangular faces) and c) spinel law (111) contact twinned tetrahedron (8 triangular + 6 right trapezoidal faces) fig_15_16
10
How plentiful are diamonds? Can everyone have one?
Availability of Diamonds versus people 2015 surface area of earth 2004 Production 0.3 fraction of continents 35.6 Russia km2 on continents 31.6 Botswana 28 Kinshasa (Congo) 153.03 km2 kimberlites 20.8 Australia m2/km2 14.5 South Africa km2 12.3 Canada 1000 1 km deep mine 142.8 Mcarats/year 1.5303E+11 m3 1 1 macrodiamond/m3 #macrodiamonds 0.2 gram/carat g/year 2004 world population years to give everyone a 1 carat diamond It is also much cheaper to synthesize a diamond than to mine one!
11
Carbon Phase Diagram & Carbon Structures
12
fig_box15_02
13
Sulfides, Sulfosalts & Arsenides
tableun_15_01
14
Metallic Sulfides: Sphalerite (ZnS cubic), Chalcopyrite CuFeS2 (tetragonal) & Tetrahedrite Cu6Cu4(Fe,Zn)2Sb4S13 (Cubic) fig_15_05
15
Sphalerite Crystal Forms: Octahedron (111) + Dodecahedron (110), 20 faces: 8 incomplete equilateral triangles or hexagons + 12 rectangles fig_15_21
16
Metallic Sulfides: Sphalerite (ZnS, 43m), Chalcopyrite CuFeS2 (42m) scalenohedral & Tetrahedrite Cu6Cu4(Fe,Zn)2Sb4S13 (43m) hextetrahedral Sphalerite: 0.7 cm red sphalerite, white dolomite, drusy pyrite, Silurian Lockeport Dolomite, Niagra Falls, ON. (rock from canal dump),M. Wilson photo, Mindat. Chalcopyrite: & Quartz, Logan Lake Mine, Highland Valley, Kamloops, B.C., 6.5 cm spec J.Nemitz photo, Mindat. Tetrahedrite: with pyrite & quartz, Brandywine Creek Van Silver Property, B.C., R.O Meyer photo, Mindat.
17
Chalcopyrite Crystal Forms: Distorted Tetrahedron, Disphenoid (2 domes) + Distorted tetragonal prism + dipyramid fig_15_22
18
Zn & Cd Sulfides: Sphalerite 43m vs Wurtzite: 1-3m & 3-6mm forms
Igneous, Metamorphic, Hydrothermal fig_15_06
19
Sulfides: CuS Covellite 6/m2/m2/m2/m
fig_15_07 Low temperature supergene copper mineral with a complex structure. Alternnating sheets of CuS4 tetrahedral with CuS3 hexagonal sheet between. Intense peacock purple-indigo-blue colours, iridescent, 1.5<H<2, Perfect basal (0001) cleavage, blades and masses. Hydrothermal, Fumarolic, epithermal over other copper sulfide deposits. Cape d’or Basy of Fundy Nova Scotia with Chrysacholla,Stibnite and native Cu. Photo R. Van Dommelen, Mindat.
20
Pyrite Crystal Forms: a) Cube (100) b) Pyritohedron (210), c) Cube +Pyritohedron
d+e) Octahedron + Pyritohedron, f) Penetration twinned Pyritohedron Fe-Cross fig_15_32
21
Massive Pyrite with Pyritohedrons and Penetration Twinned Cubes
fig_15_34
22
Fe Sulfides: Pyrite & Py after Marcasite
Same mine: 2 generations of mineralization Pyrite 2/m3 diploidal here striated cubes High temperature, low acidity polymorph of marcasite. Here primary pyrite crystals in open vein. Sediments, thermal waters, with Sphalerite Nanisivik Mine, Baffin Is., Nunavut. Photo J. Betts, Mindat. Pyrite 2/m3 pseudomorphs after primary marcasite High temperature, low acidity polymorph of marcasite. Here primary pyrite crystals in open vein. Sediments, thermal waters, with Sphalerite Nanisivik Mine, Baffin Is., Nunavut. Photo J. Betts, Mindat. fig_15_08
23
Marcasite Crystals FeS2 Orthorhombic Tabular on (010) or Prismatic on (001)
fig_15_35
24
Marcasite Crystals FeS2 Spear Twinned and Cock’s Comb Habits
fig_15_36
25
Fe Sulfides: Pyrite, Marcasite, Arsenopyrite
Marcasite 2/m2/m2/m dipyramidal cockscomb, bladed Low temperature, high acidity polymorph of pyrite Sediments, thermal waters Mar + Qtz, Francon Quarry, Montreal. Photo M.Pollinger, Mindat. fig_15_08 Arsenopyrite 2/m prismatic but common pseudo octahedral crystals with (100) and (001) twin striations. Face centered unit cell Asp + Qtz, Dufferin Mine, Nova Scotia with Photo R. Van King, Mindat.
26
Arsenopyrite Crystal Forms Monoclinic 2/m (pseudo-orthorhombic) similar to Marcasite but silvery white colour and from Skutterudite by crystal form. Elongate on c or b, Twins: (100) + (001) fig_15_38
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.