Presentation is loading. Please wait.

Presentation is loading. Please wait.

June 16, 2015 CLIC WORKSHOP JANUARY 18 – 22, 2016 OPTIMIZED RF UNIT I 1 January 21, 2016 By: Mikael Lindholm.

Similar presentations


Presentation on theme: "June 16, 2015 CLIC WORKSHOP JANUARY 18 – 22, 2016 OPTIMIZED RF UNIT I 1 January 21, 2016 By: Mikael Lindholm."— Presentation transcript:

1 June 16, 2015 CLIC WORKSHOP JANUARY 18 – 22, 2016 OPTIMIZED RF UNIT I 1 January 21, 2016 By: Mikael Lindholm

2 June 16, 2015 WHAT IS AN RF UNIT? I 2 Modulator Klystron Solenoid Magnet Solenoid PS RF Amplifier Filament PS RF Source Ion Pump PS

3 June 16, 2015 RF UNIT SYSTEM ILLUSTRATION I 3 External Water Cooling System Filament DCPS Core Bias DCPS HVPS #1 - N Control System Unit P o w er Di st ri b uti o n U nit L1 L2 L3 GND Water Cooling Distribution SW #3 SW #1 SW #2 SW #n RF- Source RF- Amplifier Solenoid PS #1-3 Ion Pump PS Modulator X L/min Collector X L/min Body X L/min Solenoid X L/min Trig I pulse U pulse Remote Interface X W, X GHz 380-480VAC 50/60Hz Safety Interface 3-phase 480VAC 1-phase 120VAC Solid State Modulator Pulse Transforme r Oil Tank RF XGHz X A CT CVD Water Flow Interlocks Vacuum Interlock Current Interlock Waveguide pressure Int., Arc Int, VSWR Int. L1 N GND 115 -230VAC 50/60Hz

4 June 16, 2015 HOW TO OPTIMIZE AN RF UNIT? RF QUALITY  Frequency stability  Phase stability  Power Stability  Time jitter  Efficiency COMPACTNESS LOW COST

5 June 16, 2015 PULSE SHAPE The ideal Klystron Voltage Pulse The ideal RF Pulse The traditional Klystron Voltage Pulse The traditional RF Pulse

6 June 16, 2015 OPTIMAL LOAD IMPEDANCE I 6 LOW < 50Ω Optimal 500 – 2.000 Ω High >10.000Ω Klystron Impedance Rise time Pulse droop

7 June 16, 2015 EXAMPLE: K2-4 SYSTEM 80MW S-BAND (2012) I 7 392 kV/µs407 kV/µs Stability: 30 PPM 400kV / 500 A / 4.5us / 60 Hz Impedance 800 Ω Ideal Pulse Useful Power Area Non useful Power Area Non useful Power Area 82% Size: 3m x 1.8m x 1.9m 15 MW/m 2 Δ V/V<0.003% Jitter 5ns

8 June 16, 2015 PHASE SHIFT DEPENDANCE OF AMPLITUDE STABILITY V=285 kV, L=0,65 m V=362 kV, L=0,5 m S-band 38MW 2998,5 MHz C-band 50MW 5712 MHz V=420 kV, L=0,6 m X-band 50MW 12 000 MHz

9 Stable operation in saturated mode 20MW - linear  20MW – in-between  20MW - saturation input: 17W, HVPS: 890Vinput: 43W, HVPS: 770V input: 135W, HVPS: 713V σ phase = 0.025°σ phase = 0.032 °σ phase = 0.021° σ amplt (rel.) = 0.029% σ amplt (rel.) = 0.018% σ amplt (rel.) = 0.007% 30 min. 27 min. 22 min. Courtesy of R. Kalt and T. Schilcher 2011 rel. pulse-to-pulse amplt. stability pulse-to-pulse phase stability [deg] σ phase, σ amplt : std. deviation over last 40 pulses remark: overall stability < 4·10 -5 (rms) Linear Mode <290 PPM Not staturated <180 PPM Saturation <70 PPM

10 June 16, 2015 DESIGN FOR SMALL SIZE I 10 Three principal concepts Split Core™ Parallel Switching™ Pulse to Pulse Control™ The inventors of the LCW modulator Mikael Lindholm, SE Walter Crewson, USA David K Woodburn, UK 0 – 1400 VDC 0 – 1400V0 – 500.000 V

11 June 16, 2015 EXAMPLE: K1-SYSTEM FOR 7.5 MW S-BAND (2005) I 11 Stability: 1000 PPM (0,1%) 169kV / 105 A / 5us / 10 Hz Size: 1.5m x 0.6m x 1.1m 8 MW/m 2 220 kV/µs 230 kV/µs

12 June 16, 2015 DESIGN FOR COMPACTNESS I 12

13 June 16, 2015 2010: K2-1 SYSTEM FOR 22MW S-BAND 260 kV/µs 238 kV/µs 200kV / 180 A / 4 us / 3 Hz Size: 1.8m x 1.5m x 1.2m 8 MW/m 2 Stability: 100 PPM (0,01%)

14 June 16, 2015 EXAMPLE: K2-2 SYSTEM 37MW S-BAND (2011) I 14 Storage Ring 3 GeV 18x RF Units S-band 256 kV/µs 248 kV/µs 285kV / 290 A / 4us / 100 Hz Stability: 46 PPM (0,0046%) Size: 1.7m x 1.5m x 1.9m 14 MW/m 2

15 June 16, 2015 EXAMPLE: K2-1 SYSTEM 6 MW X-BAND (2014) I 15 152kV / 99 A / 5us / 400 Hz Stability: 23 PPM (0,0023%) XBOX 3 Size: 1.4m x 1.3m x 1.9m 3.3 MW/m 2 185 kV/µs 190 kV/µs

16 June 16, 2015 EXAMPE: K2-3 SYSTEM 60MW S-BAND (2015) I 16 Storage Ring 3 GeV 370kV / 412 A / 2.5us / 100 Hz 2x 10 PW LASER at 10 24 W/cm Stability: 15 PPM (0,0015%) Size: 2.4m x 1.7m x 1.9m 15 MW/m 2 410 kV/µs420kV/µs

17 June 16, 2015 SUMMARY & CONCLUSIONS Main performance range RF Peak Power:0 – 100 MW RF Average Power0 – 100 kW RF Efficiency:35 – 75% Klystron Voltage: 0 – 500 kV (operation in air <60 kV) Klystron current: 0 – 1000 A Impedance: 500 – 2000 Ω RF pulse width: 1 – 200 µs Pulse Repetition Rates: 1 – 2000 Hz Pulse Flatness:0.1 – 2 % Pulse to Pulse stability: 10 – 100 ppm (phase stability 0.08 -2 deg) Modulator jitter:4 – 10 ns RF Power density:8 – 20 MW/m 2 I 17

18 June 16, 2015 SUMMARY & CONCLUSIONS Example: Optimised Design RF Unit RF Peak Power:8.5MW RF Average Power14kW RF efficiency:75% Klystron Voltage: 0 – 54kV Klystron current: 0 – 209 A Impedance: 258 Ω RF pulse width: 1 - 5µs Pulse Repetition Rates: 1 – 1000Hz Pulse Flatness:0.5% Pulse to Pulse stability: 70 ppm Mod. Pulse jitter:5ns I 18 Size: 1.1m x 0.6m x 0.6m 13 MW/m 2

19 June 16, 2015 THANK YOU! I 19


Download ppt "June 16, 2015 CLIC WORKSHOP JANUARY 18 – 22, 2016 OPTIMIZED RF UNIT I 1 January 21, 2016 By: Mikael Lindholm."

Similar presentations


Ads by Google