Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Chapter 21 Nucleic Acids and Protein Synthesis 21.1 Components of Nucleic Acids Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings.

Similar presentations


Presentation on theme: "1 Chapter 21 Nucleic Acids and Protein Synthesis 21.1 Components of Nucleic Acids Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings."— Presentation transcript:

1 1 Chapter 21 Nucleic Acids and Protein Synthesis 21.1 Components of Nucleic Acids Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

2 2 Nucleic Acids Nucleic acids are  Molecules that store information for cellular growth and reproduction.  Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA).  Large molecules consisting of long chains of monomers called nucleotides.

3 3 Nucleic Acids The nucleic acids DNA and RNA consist of monomers called nucleotides that consist of a  Pentose sugar.  Nitrogen-containing base.  Phosphate. nucleotide Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

4 4 Nitrogen Bases The nitrogen bases in DNA and RNA are  Pyrimidines C, T, and U  Purines A and G. Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

5 5 Nitrogen-Containing Bases in DNA and RNA DNA contains the nitrogen bases  Cytosine (C)  Guanine (G) same in both DNA and RNA  Adenine (A)  Thymine (T)different in DNA than in RNA RNA contains the nitrogen bases  Cytosine (C)  Guanine (G) same in both DNA and RNA  Adenine (A)  Uracil (U) different in DNA than in RNA

6 6 Pentose Sugars The pentose (five-carbon) sugar  In RNA is ribose.  In DNA is deoxyribose with no O atom on carbon 2′.  Has carbon atoms numbered with primes to distinguish them from the atoms in nitrogen bases. Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

7 7 HO A nucleoside  Has a nitrogen base linked by a glycosidic bond to C1′ of a sugar (ribose or deoxyribose).  Is named by changing the the nitrogen base ending to -osine for purines and -idine for pyrimidines. Nucleosides Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

8 8 A nucleotide  Is a nucleoside that forms a phosphate ester with the C5′ – OH group of a sugar (ribose or deoxyribose).  Is named using the name of the nucleoside followed by 5′-monophosphate. Nucleotides Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

9 9 Formation of a Nucleotide A nucleotide forms when the −OH on C5′ of a sugar bonds to phosphoric acid. 5’

10 10 Nucleosides and Nucleotides with Purines Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

11 11 Nucleosides and Nucleotides with Pyrimidines Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

12 12 Names of Nucleosides and Nucleotides TABLE 21.1 Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

13 13 AMP, ADP, and ATP  Adding phosphate groups to AMP forms the diphosphate ADP and the triphosphate ATP. Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

14 14 Learning Check Give the name and abbreviation for the following, and list its nitrogen base and sugar.

15 15 Solution Guanosine 5′-monophosphate; GMP nitrogen base: guanine sugar: ribose

16 16 Chapter 21 Nucleic Acids and Protein Synthesis 21.2 Primary Structure of Nucleic Acids 21.3 DNA Double Helix Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

17 17 Primary Structure of Nucleic Acids In the primary structure of nucleic acids,  Nucleotides are joined by phosphodiester bonds.  The 3’-OH group of the sugar in one nucleotide forms an ester bond to the phosphate group on the 5’-carbon of the sugar of the next nucleotide.

18 18 Primary Structure of Nucleic Acids Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

19 19 A nucleic acid polymer  Has a free 5’-phosphate group at one end and a free 3’-OH group at the other end.  Is read from the free 5’-end using the letters of the bases.  This section is read as: 5’—A—C—G—T—3’. Structure of Nucleic Acids Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

20 20 Example of RNA The primary structure of RNA  Is a single strand of nucleotides.  Consists of the bases A, C, G, and U linked by 3’-5’ ester bonds between ribose and phosphate. Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

21 21 Example of DNA In the primary structure of DNA, A, C, G, and T are linked by 3’-5’ ester bonds between deoxyribose and phosphate. Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

22 22 Double Helix of DNA The DNA structure is a double helix that  Consists of two strands of nucleotides that form a double helix structure like a spiral stair case.  Has hydrogen bonds between the bases A–T and G–C.  Has bases along one strand that complement the bases along the other. Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

23 23 Complementary Base Pairs DNA contains complementary base pairs in which  Adenine is always linked by two hydrogen bonds to thymine (A−T ).  Guanine is always linked by three hydrogen bonds to cytosine (G−C). Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

24 24 DNA Double Helix Structure Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

25 25 Write the complementary base sequence for the matching strand in the following DNA section: 5’—A—G—T—C—C —A—A—T—C—3’ Learning Check

26 26 Write the complementary base sequence for the matching strand in the following DNA section: 5’—A—G—T—C—C—A—A—T—C—3’ Solution 3’—T—C—A—G—G—T—T—A—G—5’

27 27 21.4 DNA Replication Chapter 21 Nucleic Acids and Protein Synthesis Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

28 28 DNA replication involves  Unwinding the DNA.  Pairing the bases in each strand with new bases to form new complementary strands.  Producing two new DNA strands that exactly duplicate the original DNA. DNA Replication Copyright © 2007 by Pearson Education, Inc Publishing as Benjamin Cummings

29 29 Hydrolysis Energy  Energy from the hydrolysis of each nucleoside triphosphate adding to the complementary strand is used to form the phosphodiester bond. Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

30 30 Direction of Replication During DNA replication,  An enzyme helicase unwinds the parent DNA at several sections.  At each open DNA section called a replication fork, DNA polymerase catalyzes the formation of 5’-3’ester bonds of the leading strand.  The lagging strand growing in the 3’-5’ direction is synthesized in short sections called Okazaki fragments.  The Okazaki fragments are joined by DNA ligase to give a single 3’-5’ DNA strand.

31 31 Direction of Replication Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

32 32 Learning Check Match the following: 1) helicase2) DNA polymerase 3) replication fork4) Okazaki fragments A. Short segments formed by the lagging strand. B. The starting point for synthesis in unwound DNA sections. C. The enzyme that unwinds the DNA double helix. D. The enzyme that catalyzes the formation of phosphodiester bonds of complementary bases.

33 33 Solution Match the following: 1) helicase2) DNA polymerase 3) replication fork4) Okazaki fragments A. 4 Short segments formed by the lagging strand. B. 3 The starting point for synthesis in unwound DNA sections. C. 1 The enzyme that unwinds the DNA double helix. D. 2 The enzyme that catalyzes the formation of phosphodiester bonds of complementary bases.

34 34 Chapter 21 Nucleic Acids and Protein Synthesis 21.5 RNA and Transcription Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

35 35 RNA  Transmits information from DNA to make proteins.  Has several types Messenger RNA (mRNA) carries genetic information from DNA to the ribosomes. Transfer RNA (tRNA) brings amino acids to the ribosome to make the protein. Ribosomal RNA (rRNA) makes up 2/3 of ribosomes where protein synthesis takes place.

36 36 Types of RNA TABLE 21.3 Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

37 37 tRNA Each tRNA  Has a triplet called an anticodon that complements a codon on mRNA.  Bonds to a specific amino acid at the acceptor stem. Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings anticodon

38 38 Protein Synthesis Protein synthesis involves Transcription mRNA is formed from a gene on a DNA strand. Translation tRNA molecules bring amino acids to mRNA to build a protein. Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

39 39 In transcription  A section of DNA containing the gene unwinds.  One strand of DNA is copied starting at the initiation point, which has the sequence TATAAA.  A mRNA is synthesized using complementary base pairing with uracil(U) replacing thymine(T).  The newly formed mRNA moves out of the nucleus to ribosomes in the cytoplasm. Transcription: Synthesis of mRNA

40 40 RNA Polymerase During transcription,  RNA polymerase moves along the DNA template in the 3’-5’direction to synthesize the corresponding mRNA.  The mRNA is released at the termination point. Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

41 41 Protein Synthesis: Transcription Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings transcription

42 42 mRNA Processing: Exons and Introns  The DNA of eukaryotes contains exons that code for proteins along with introns that do not.  The initial mRNA called a pre-RNA includes the noncoding introns.  While in the nucleus, the introns are removed from the pre-RNA.  The exons that remain are joined to form the mRNA that leaves the nucleus with the information for the synthesis of protein.

43 43 Removing Introns from Pre- mRNA Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

44 44 Regulation of Transcription Transcription is regulated by  A specific mRNA synthesized when the cell requires a particular protein.  Feedback control, in which the end products speed up or slow the synthesis of mRNA.  Enzyme induction, in which high levels of a reactant induce the transcription process to provide the necessary enzymes for that reactant.

45 45 Lactose Operon and Repressor  The lactose operon consists of a control site and the genes that produce mRNA for lactose enzymes.  When there is no lactose in the cell, a regulatory gene produces a repressor protein that prevents the synthesis of lactose enzymes.  The repressor turns off mRNA synthesis.

46 46 Lactose Operon Turned Off Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

47 47 Lactose Operon and Inducer  When lactose is present in the cell, some lactose combines with the repressor, which removes the repressor from the control site.  Without the repressor, RNA polymerase catalyzes the synthesis of the enzymes by the genes in the operon.  The level of lactose in the cell induces the synthesis of the enzymes required for its metabolism.

48 48 Lactose Operon Turned On RNA Polymerase Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

49 49 Learning Check What is the sequence of bases in mRNA produced from a section of the template strand of DNA that has the sequence of bases: 3’–C–T–A–A–G–G–5’? 1. 5’–G–A–T–T–C–C–3’ 2. 5’–G–A–U–U–C–C–3’ 3. 5’–C–T–A–A–G–G–3’

50 50 Solution What is the sequence of bases in mRNA produced from a section of the template strand of DNA that has the sequence of bases: 3’–C–T–A–A–G–G–5’? 3’–C–T–A–A–G–G–5’? 2. 5’–G–A–U–U–C–C–5’

51 51 Chapter 21 Nucleic Acids and Protein Synthesis 21.6 The Genetic Code Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

52 52 Genetic Code The genetic code  Is a sequence of amino acids in a mRNA that determine the amino acid order for the protein.  Consists of sets of three bases (triplet) along the mRNA called codons.  Has a different codon for all 20 amino acids needed to build a protein.  Contains certain codons that signal the “start” and “end” of a polypeptide chain.

53 53 The Genetic Code: mRNA Codons TABLE 21.4 Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

54 54 Suppose we want to determine the amino acids coded for in the following section of a mRNA. 5’—CCU —AGC—GGA—CUU—3’ According to the genetic code, the amino acids for these codons are CCU = ProlineAGC = Serine GGA = Glycine CUU = Leucine The mRNA section codes for the amino acid sequence of Pro—Ser—Gly—Leu Codons and Amino Acids

55 55 Write the order of amino acids coded for by a section of mRNA with the base sequence 5’—GCC—GUA—GAC—3’. Some possible codons to use are the following: GGC = GlycineGAC = Aspartic acid CUC = LeucineGUA = Valine GCC = AlanineCGC = Arginine Learning Check

56 56 GGC = GlycineGAC = Aspartic acid CUC = LeucineGUA =Valine GCC = AlanineCGC = Arginine 5’—GCC—GUA—GAC—3’ Ala——Val——Asp Solution

57 57 Chapter 21 Nucleic Acids and Protein Synthesis 21.7 Protein Synthesis: Translation Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

58 58 tRNA Activation The activation of tRNA  Occurs when a synthetase uses energy of ATP hydrolysis to attach an amino acid to a specific tRNA.  Prepares each tRNA to use a triplet called an anticodon to complement a codon on mRNA. Anticodon Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

59 59 For the initiation of protein synthesis  A mRNA attaches to a ribosome.  The start codon (AUG) binds to a tRNA with methionine.  The second codon attaches to a tRNA with the next amino acid.  A peptide bond forms between the adjacent amino acids at the first and second codons. Initiation of Protein Synthesis

60 60 During translocation  The first tRNA detaches from the ribosome.  The ribosome shifts to the adjacent codon on the mRNA.  A new tRNA/amino acid attaches to the open binding site.  A peptide bond forms and that tRNA detaches.  The ribosome shifts down the mRNA to read the next codon. Translocation

61 61 Protein Synthesis translation Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

62 62 In the terminiation of protein synthesis  After a polypeptide with all the amino acids for a protein is synthesized.  The ribosome reaches a “stop” codon: UGA, UAA, or UAG.  There is no tRNA with an anticodon for the “stop” codons.  Protein synthesis ends.  The polypeptide detaches from the ribosome. Termination of Protein Synthesis

63 63 Match the following: 1) Activation 2) Initiation 3) Translocation4) Termination A. Ribosomes move along mRNA adding amino acids to a growing peptide chain. B. A completed peptide chain is released. C. A tRNA attaches to its specific amino acid. D. A tRNA binds to the AUG codon of the mRNA on the ribosome. Learning Check

64 64 Match the following: 1) Activation 2) Initiation 3) Translocation4) Termination A. 3 Ribosomes move along mRNA adding amino acids to a growing peptide chain. B. 4 A completed peptide chain is released. C. 1 A tRNA attaches to its specific amino acid. D. 2 A tRNA binds to the AUG codon of the mRNA on the ribosome. Solution

65 65 Summary of Protein Synthesis To summarize protein synthesis:  A mRNA attaches to a ribosome.  tRNA molecules bonded to specific amino acids attach to the codons on mRNA.  Peptide bonds form between an amino acid and the peptide chain.  The ribosome shifts to each codon on the mRNA until it reaches the STOP codon.  The polypeptide chain detaches to function as an active protein.

66 66 Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

67 67 The following section of DNA is used to build a mRNA for a protein. 3’—GAA—CCC—TTT—5’ A. What is the corresponding mRNA sequence? B. What are the anticodons on the tRNAs? C. What is the amino acid order in the peptide? Learning Check

68 68 3’—GAA—CCC—TTT—5’ DNA A. What is the corresponding mRNA sequence? 5’—CUU—GGG—AAA—3’ mRNA B. What are the anticodons for the tRNAs? mRNA codons CUU GGG AAA tRNA anticodons GAA CCC UUU C. What is the amino acid order in the peptide? mRNA 5’—CUU—GGG—AAA—3’ Leu — Gly — Lys Solution

69 69 Chapter 21 Nucleic Acids and Protein Synthesis 21.8 Genetic Mutations 21.9 Recombinant DNA Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

70 70 A mutation  Alters the nucleotide sequence in DNA.  Results from mutagens such as radiation and chemicals.  Produces one or more incorrect codons in the corresponding mRNA.  Produces a protein that incorporates one or more incorrect amino acids.  Causes genetic diseases that produce defective proteins and enzymes. Mutations

71 71 Normal DNA Sequence  The normal DNA sequence produces a mRNA that provides instructions for the correct series of amino acids in a protein. Correct order Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

72 72 Mutation: Substitution In a substitution mutation,  A different base substitutes for the proper base in DNA.  There is a change in a codon in the mRNA.  The wrong amino acid may be placed in the polypeptide. Incorrect order Wrong amino acid Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

73 73 Mutation: Frame Shift In a frame shift mutation,  An extra base adds to or is deleted from the normal DNA sequence.  All the codons in mRNA and amino acids are incorrect from the base change. Incorrect amino acids Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

74 74 Genetic Diseases TABLE 21.6 Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

75 75 Learning Check Identify each type of mutation as a substitution (S) frame shift (F) 1. Cytidine (C) enters the DNA sequence. 2. One adenosine is removed from the DNA sequence. 3. A base sequence of TGA in DNA changes to TAA.

76 76 Solution Identify each type of mutation as a substitution (S) frame shift (F) 1. F Cytosine (C) enters the DNA sequence. 2. F One adenosine is removed from the DNA sequence. 3. S A base sequence of TGA in DNA changes to TAA.

77 77 Recombinant DNA In recombinant DNA,  A DNA fragment from one organism is combined with DNA in another.  Restriction enzymes are used to cleave a gene from a foreign DNA and open DNA plasmids in E. coli.  DNA fragments are mixed with the plasmids in E. coli and the ends are joined by ligase.  The new gene in the altered DNA produces protein.

78 78 Recombinant DNA Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

79 79 Products of Recombinant DNA Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings TABLE 21.7

80 80 DNA Fingerprinting In DNA fingerprinting (Southern transfer):  Restriction enzymes cut a DNA sample into smaller fragments (RFLPs).  The fragments are sorted by size.  A radioactive isotope that adheres to certain base sequences in the fragments produces a pattern on X- ray film, which is the “fingerprint”.  The “fingerprint” is unique to each individual DNA.

81 81 Polymerase Chain Reaction A polymerase chain reaction (PCR):  Produces multiple copies of a DNA in a short time.  Separates the sample DNA strands by heating.  Mixes the separated strands with enzymes and nucleotides to form complementary strands.  Is repeated many times to produce a large sample of the DNA.

82 82 Polymerase Chain Reaction Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

83 83 21.10 Viruses Chapter 21 Nucleic Acids and Protein Synthesis Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

84 84 Viruses  Are small particles of DNA or RNA that require a host cell to replicate.  Cause a viral infection when the DNA or RNA enters a host cell.  Are synthesized in the host cell from the viral RNA produced by viral DNA.

85 85 Viruses Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

86 86 Reverse Transcription In reverse transcription  A retrovirus, which contains viral RNA, but no viral DNA, enters a cell.  The viral RNA uses reverse transcriptase to produce a viral DNA strand.  The viral DNA strand forms a complementary DNA strand.  The new DNA uses the nucleotides and enzymes in the host cell to synthesize new virus particles.

87 87 Reverse Transcription Copyright © 2007 by Pearson Education, Inc Publishing as Benjamin Cummings

88 88 HIV Virus and AIDS The HIV-1 virus  Is a retrovirus that infects T4 lymphocyte cells.  Decreases the T4 level making the immune system unable to destroy harmful organisms.  Causes pneumonia and skin cancer associated with AIDS. HIV virus Copyright © 2007 by Pearson Education, Inc Publishing as Benjamin Cummings

89 89 AIDS Treatment  One type of AIDS treatment prevents reverse transcription of the viral DNA.  When altered nucleosides such as AZT and ddI are incorporated into viral DNA, the virus is unable to replicate.

90 90 AIDS Treatment Azidothymine (AZT) Dideoxyinosine (ddI)

91 91 AIDS Treatment  Another type of AIDS treatment involves protease inhibitors such as saquinavir, indinavir, and ritonavir.  Protease inhibitors modify the active site of the protease enzyme, which prevents the synthesis of viral proteins. Inhibited by Inhibited by AZT, ddI protease inhibitors reverse transcriptase protease Viral RNA Viral DNA Viral proteins

92 92 Learning Check Match the following: 1) Virus2) Retrovirus 3) Protease inhibitor4) Reverse transcription A. A virus containing RNA. B. Small particles requiring host cells to replicate. C. A substance that prevents the synthesis of viral proteins. D. Using viral RNA to synthesize viral DNA.

93 93 Solution Match the following: 1) Virus2) Retrovirus 3) Protease inhibitor4) Reverse transcription A. 2 A virus containing RNA. B. 1 Small particles requiring host cells to replicate. C. 3 A substance that prevents the synthesis of viral proteins. D. 4 Using viral RNA to synthesize viral DNA.


Download ppt "1 Chapter 21 Nucleic Acids and Protein Synthesis 21.1 Components of Nucleic Acids Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings."

Similar presentations


Ads by Google