Presentation is loading. Please wait.

Presentation is loading. Please wait.

Prof. Dr.-Ing. Ulrich Diederichs Fachgebiet Baustoffe, Universität Rostock Kompetenzzentrum Bau MV, Hochschule Wismar SUPMAT Seminar 19 th June 2013, Brno.

Similar presentations


Presentation on theme: "Prof. Dr.-Ing. Ulrich Diederichs Fachgebiet Baustoffe, Universität Rostock Kompetenzzentrum Bau MV, Hochschule Wismar SUPMAT Seminar 19 th June 2013, Brno."— Presentation transcript:

1 Prof. Dr.-Ing. Ulrich Diederichs Fachgebiet Baustoffe, Universität Rostock Kompetenzzentrum Bau MV, Hochschule Wismar SUPMAT Seminar 19 th June 2013, Brno VUT

2 SUPMAT Seminar,19 th June 2013, Brno VUT 2 By: Dipl.-Ing. B. Lange, BauUnion Wismar

3 SUPMAT Seminar, 19 th June 2013, Brno VUT 3 By: Dipl.-Ing. B. Lange, BauUnion Wismar

4 SUPMAT Seminar, 19 th June 2013, Brno VUT 4 AN Bonus 2.3 MW, 103.0 m propeller axis height

5 SUPMAT Seminar, 19 th June 2013, Brno VUT 5 Foundation structure Foundation structure: AN Bonus 2,3 MV, 103,0 m propeller axis height Foundation Foundation: A = 17.50 x 17.5 m², H = 2.2 m V = 674 m³ - Concrete class: C25/30, XC4, XF1 Concrete shaft: Concrete shaft: H = 4.8 m, Wall thickness = 0.80 m V = 60 m³ - Concrete class: C35/45 XC4, XF1 Massive concrete structures

6 SUPMAT Seminar, 19 th June 2013, Brno VUT 6 Concrete class C25/30 XC4 XC4 = Alternating wet and dry, outdoor components exposed to direct irrigation  C25/30 (else like XF1) XF1 XF1 = Moderate water saturation without deicing salt, outdoor components  C25/30 w/c = 0.60, minimum cement content = 280 kg/m³ or 270 kg/m³ when taking into account the cement replacements like fly ash XA XA… = … 1,2 oder 3 …, possibly advanced requirements

7 SUPMAT Seminar, 19 th June 2013, Brno VUT 7 Concrete class C35/45 XC4 XC4 = Alternating wet and dry, outdoor components exposed to direct irrigation  C25/30 (else like XF1) XF1 XF1 = Moderate water saturation without deicing agents, outdoor components  C25/30 w/c = 0.60, minimum cement content = 280 kg/m³ or. 270 kg/m³ when taking into account the cement replacements like fly ash

8 Temperature rise due to heat of hydration in the core of concrete structures of different thicknesses, concrete made with 300 kg/m³ cement SUPMAT Seminar, 19 th June 2013, Brno VUT 8

9 9 Heat release during hydration With z = 300 kg/m³ and H n,∞ = 375…525 J/g CEM I = 355…440 J/g CEM III one yields following temperatures ∆T n (∞) = 41,2 K ∆T n (∞) = 60,9 K + fresh concrete temperature = 25°C T concrete (∞) = 66,2 °C T concrete (∞) = 85,9 °C Maximum temperature after t max,T = 0.8 x d +1 in days

10 Definitions: Example: Development of temperatures and stresses in foundation slabs according to Prof. Rostásy et al. SUPMAT Seminar, 19 th June 2013, Brno VUT 10

11 Foundation slab - soil – system used in the calculations SUPMAT Seminar, 19 th June 2013, Brno VUT 11

12 SUPMAT Seminar, 19 th June 2013, Brno VUT 12

13 Composition of the concretes investigated and model parameters SUPMAT Seminar, 19 th June 2013, Brno VUT 13

14 SUPMAT Seminar, 19 th June 2013, Brno VUT 14 Measured adiabatic temperature rise versus real age of concrete (A) and derived development of the degree of hydratation versus effective concrete age – measured values and according to the model (B)

15 Development of the temperatures averaged versus the cross section for the sole plates in the spring, slab thickness, dc = 1.0 m, 2 m, 3 m SUPMAT Seminar, 19 th June 2013, Brno VUT 15

16 SUPMAT Seminar, 19 th June 2013, Brno VUT 16 Development of the averaged over the cross section temperature for a d c = 2 m thick foundation slab with concrete 1; with variation of the season

17 SUPMAT Seminar,19 th June 2013, Brno VUT 17 Time course of the temperature difference ΔTK-R between the core and the upper or lower edge at different plate thicknesses; manufactured in the spring

18 SUPMAT Seminar, 19 th June 2013, Brno VUT 18 Stress development in the core and edge with a thickness of dc = 3 m and production in spring (A)(B) f ct,K : core f ct,R.o : edge up f ct,R.u : bottom edge σ K : core σ R.o : edge up σ R.u : bottom edge

19 SUPMAT Seminar, 19 th June 2013, Brno VUT 19 Stress gradient over the foundation slab according to the stress development shown in the previous chart, dc = 3 m, spring

20 SUPMAT Seminar, 19 th June 2013, Brno VUT 20 Parameters influencing the restraint evolution during the hardening

21 SUPMAT Seminar, 19 th June 2013, Brno VUT 21

22 SUPMAT Seminar, 19 th June 2013, Brno VUT 22 Quelle: Dr. M. Binder, Schwerin

23 SUPMAT Seminar, 19 th June 2013, Brno VUT 23 Quelle: Dr. M. Binder, Schwerin

24 AN Bonus 2.3 MW, 103.0 m propeller axis height SUPMAT Seminar, 19 th June 2013, Brno VUT 24

25 SUPMAT Seminar, 19 th June 2013, Brno VUT 25

26 SUPMAT Seminar,19 th June 2013, Brno VUT 26

27 SUPMAT Seminar, 19 th June 2013, Brno VUT 27

28 SUPMAT Seminar, 19 th June 2013, Brno VUT 28

29 Another example for the effect of constraint: Another example for the effect of constraint: Eigenstate of stresses due to rapid cooling while form stripping SUPMAT Seminar, 19 th June 2013, Brno VUT 29

30 SUPMAT Seminar, 19 th June 2013, Brno VUT 30

31 Components made of plain, reinforced and prestressed concrete, with large size (> 0.8 m), for which elevated temperatures due to release of heat of hydration, constraint and eigenstresses are to be taken into account SUPMAT Seminar, 19 th June 2013, Brno VUT 31

32 Changes and supplements according to EN 206-1 and DIN 1045-2, resp.: characteristic strength may be determined after 28 d or 56 d or 91d, should also define requirements for the maximum temperature and include the permissible heat release for more than 5 h retarding time - concrete age at 2 d time of confirmation test for the compressive strength => = 2 d + retarding time SUPMAT Seminar, 19 th June 2013, Brno VUT 32

33 Within the framework of concrete production and delivery: Coordinating of the supplying and the standby plant Disposal for the raw materials Organization and check of the silo occupation Monitoring concept of mixing (e.g., requirements and testing of raw materials and the concrete) Call and delivery of the concrete Disposal and instruction of the delivery vehicles Plasticizer-dosage/addition at the construction site Documentation SUPMAT Seminar, 19 th June 2013, Brno VUT 33 In applications of the guideline it is prerequisite to compile a quality assurance plan (QSP); see notes in the guideline

34 For the execution: For the execution: Acceptance of the single work parts (formwork, reinforcement, joint sealing Concrete conception (concrete sorts, pouring sequence, production,installation) Concrete pouring instruction for single concrete sections Monitoring concept for the site (e.g. acceptance, additional fresh and hardened concrete tests, temperature development in the component) Curing concept, controlling of the heat transfer Documentation In good time before start of the construction is a prevequisite to compil a concreting concept SUPMAT Seminar, 19 th June 2013, Brno VUT 34

35 The slowest temperature rise due to the release of heat of hydration should be selected (concrete composition; cement with low heat of hydration max. 270 J/g and 220 J/g after 7 d, low concrete temperature), aggregates of low thermal expansion (basalt, limestone) The maximum temperature and the temperature difference between core and edge zone are to be kept low, for example by controlling the heat flow (see note on the guideline) SUPMAT Seminar, 19 th June 2013, Brno VUT 35

36 36 SUPMAT Seminar, 19 th June 2013, Brno VUT

37 37 After Marquardt/ Kallweit 37SUPMAT Seminar, 19 th June 2013, Brno VUT

38 38 After Marquardt/ Kallweit 38SUPMAT Seminar, 19 th June 2013, Brno VUT

39 39 SUPMAT Seminar, 19 th June 2013, Brno VUT

40 40 Affter Marquardt/ Kallweit Strength development of various concretes for the flood gate, chamber wall and leveling concrete lor the lock Bolzum 40SUPMAT Seminar, 19 th June 2013, Brno VUT

41 Else like in DIN technical report 100 or in accordance with DIN 1045-3, section 8.7Curing duration Strength development is described by: Average compressive strength after 2 days / time of testing for the proof of compressive strength (28, 56 or 91 days) (determined in the first qualifying tests or with a concrete of similar composition) Else like in DIN technical report 100 or in accordance with DIN 1045-3, section 8.7 SUPMAT Seminar, 19 th June 2013, Brno VUT 41

42 Foundations of wind power stations are massive concrete constructions Specific demands on composition, manufacture and pouring of the concrete are to be taken into account Prevention of high constraint and eigenstressesPrevention of high constraint and eigenstresses:  Temperature of the fresh concrete are to be kept low  Concreting preferably in the cooler seasons  Heat of hydration release must kept low and slow  Utilization of cements with low heat release, and low cement content Use of fly ash as cement replacement Use of aggregates with low thermal expansion (Limestone instead of quartz gravel, but in practice hardly possible) SUPMAT Seminar, 19 th June 2013, Brno VUT 42

43 Work according to guideline „massive concrete constructions“ QA-plan (according to the guideline) Temperature criteria for the heat liberation of the concrete (e.g. according to ZTW, Teil 2, Table 2.2 ∆T quadiab + T fresh concrete < 56°C, determination with big concrete blocks: 2 x 2 x 2 m 3 ) Definition of the concrete age for the strength approval tests to 56 d Prolonged time curing SUPMAT Seminar, 19 th June 2013, Brno VUT 43

44 SUPMAT Seminar, 19 th June 2013, Brno VUT44 http://willa.de/gallery/albums/album02/Windrad.jpg

45 DIN Fachbericht 100, März 2010. ZTV-ING - Zusätzliche Technische Vertragsbedingungen und Richtlinien für Ingenieurbauten, Teil 3 Massivbau, Abschnitt 1. Beton, Stand 07.07.2006. DAfStb-Richtlinie Massige Bauteile aus Beton, Teil 1: Ergänzungen zu DIN 1045-1, Teil 2: Änderungen und Ergänzungen zu DIN EN 206-1 und DIN 1045-2, Teil 3 Änderungen und Ergänzungen zu DIN 1045-3. Bundesverband der Deutschen Transportbetonindustrie e.V. (BTB) (Hrsg.): Transportbeton nach DIN EN 206-1/DIN 1045-2, Hinweise für die praktische Umsetzung, Stand Juni 2011. Verein Deutscher Zementwerke e.V. /(Hrsg.): Zement-Taschenbuch 2002. Verlag Bau und Technik, Düsseldorf 2002. Rostásy, F.S.; Gutsch, A.-W., Krauß, M.: Zwangsspannungen in massigen Bauteilen - Problem und Beherrschung. In Braunschweiger Bauseminar 12. und 13. November 1998, Beton auf neuen Wegen. Heft 141 des Instituts für Baustoffe, Massivbau und Brandschutz der TU Braunschweig, 1998. Falkner, H.; Teutsch, M: Fugenlose Bauwerke. In Braunschweiger Bauseminar 12. und 13. November 1998, Beton auf neuen Wegen. Heft 141 des Instituts für Baustoffe, Massivbau und Brandschutz der TU Braunschweig, 1998. Marquardt, I.; Kallweit, K.-D.: Schleuse Bolzum – Einsatz von hüttensandhaltigen Zementen im Wasserbau. Vortrag auf der 3. Betonfachtagung Nord – 29. und 30. September 2011, TU Braunschweig 2011. Rostásy, F.S.: Baustoffe. Verlag W. Kohlhammer. Stuttgart.Berlin.Köln.Mainz, 1983. Springenschmidt, R.: Betontechnologie für die Praxis. Bauwerk Verlag GmbH, Berlin, 2007 (s.S. 182). Langer. F.: Bauzustandsbetrachtung an Betonfundamenten von Windenergieanlagen- Schadensbilder und mögliche Schadensursachen. Beton 5/2009 SUPMAT Seminar, 25th April 2012, Brno VUT 45

46 smallest component dimensions 80 cm the definition should include additional requirements on the maximum temperature of the fresh concrete and the heat generated during hydration identification as a concrete policy on this with this policy, a quality assurance plan must be created otherwise, like DIN Technical Report 100 compressive strength classes: test after 28, 56 or 91d possible 46 SUPMAT Seminar, 19 th June 2013, Brno VUT


Download ppt "Prof. Dr.-Ing. Ulrich Diederichs Fachgebiet Baustoffe, Universität Rostock Kompetenzzentrum Bau MV, Hochschule Wismar SUPMAT Seminar 19 th June 2013, Brno."

Similar presentations


Ads by Google