Presentation is loading. Please wait.

Presentation is loading. Please wait.

Renal Physiology Rut Beyene P3. Composition of the Urinary System.

Similar presentations


Presentation on theme: "Renal Physiology Rut Beyene P3. Composition of the Urinary System."— Presentation transcript:

1 Renal Physiology Rut Beyene P3

2 Composition of the Urinary System

3 Functions of the Kidneys 1)filter blood plasma, separate wastes, return useful materials to the blood, and eliminate the wastes. 1)regulate blood volume and osmolarity.

4 URINE FORMATION

5 The kidney produces urine through 4 steps.

6 Glomerular Filtrate Tubular fluid Urine

7 1) Glomerular Filtration

8 The Filtration Membrane From the plasma to the capsular space, fluid passes through three barriers. fenestrated epithelium basement membrane foot processes

9 The Filtration Membrane Almost any molecule smaller than 3 nm can pass freely through the filtration membrane into the capsular space. These include: Water, electrolytes, glucose, amino acids, lipids, vitamins, and nitrogenous wastes Kidney infections and trauma commonly damage the filtration membrane and allow plasma proteins or blood cells to pass through.

10 Blood cells in urine Plasma proteins

11 Filtration Pressure Glomerular filtration follows the same principles that govern filtration in other capillaries.

12 Glomerular Filtration Rate (GFR) - is the amount of filtrate formed per minute by the two kidneys combined. - For the average adult male, GFR is about 125 ml/min. - This amounts to a rate of 180 L/day. - An average of 99% of the filtrate is reabsorbed, so that only 1-2 L of urine per day is excreted.

13 GFR must be precisely controlled. a.If GFR is too high - increase in urine output - threat of dehydration and electrolyte depletion. b.If GFR is too low - insufficient excretion of wastes. c.The only way to adjust GFR from moment to moment is to change glomerular blood pressure.

14 Renal Autoregulation - the ability of the kidneys to maintain a relatively stable GFR in spite of the changes (75 - 175 mmHg) in arterial blood pressure.

15 The nephron has two ways to prevent drastic changes in GFR when blood pressure rises: 1) Constriction of the afferent arteriole to reduce blood flow into the glomerulus 2) Dilation of the efferent arteriole to allow the blood to flow out more easily. Change in an opposite direction if blood pressure falls

16 Mechanisms of Renal Autoregulation 1) myogenic response 2) tubuloglomerular feedback

17 1) myogenic response

18 2) tubuloglomerular feedback

19 1) Glomerular Filtration 2) Tubular Reabsorption 3) Tubular Secretion 4) Concentrating Urine by Collecting Duct

20 About 99% of Water and other useful small molecules in the filtrate are normally reabsorbed back into plasma by renal tubules.

21 Reabsorption in Proximal Convoluted Tubules

22 - The proximal convoluted tubule (PCT) is formed by one layer of epithelial cells with long apical microvilli. - PCT reabsorbs about 65% of the glomerular filtrate and return it to the blood.

23 1) transcellular route 2) paracellular route Routes of Proximal Tubular Reabsorption PCT peritubular capillary

24 Mechanisms of Proximal Tubular Reabsorption 1) Active transport of sodium. 2) Secondary active transport of glucose, amino acids, and other nutrients. 3) Secondary water reabsorption via osmosis 4) Secondary ion reabsorption via electrostatic attraction 5) Endocytosis of large solutes

25 Osmosis Water moves from a compartment of low osmolarity to the compartment of high osmolarity. low osmolarity ( high H 2 O conc.) high osmolarity ( low H 2 O conc.) H2OH2O

26 Active transport of sodium Sodium pumps (Na-K ATPase) in basolateral membranes transport sodium out of the cells against its concentration gradient using ATP. capillary PCT cellTubular lumen Na + K+K+

27 There are also pumps for other ions capillary PCT cellTubular lumen Ca ++

28 - Various cotransporters can carry both Na+ and other solutes. For example, the sodium- dependent glucose transporter (SDGT) can carry both Na+ and glucose. Secondary active transport of glucose, amino acids, and other nutrients Na + Glucose capillaryPCT cell Na + K+K+

29 Amino acids and many other nutrients are reabsorbed by their specific cotransporters with sodium. Na + capillaryPCT cell Na + K+K+ amino acids Secondary active transport of glucose, amino acids, and other nutrients

30 Sodium reabsorption makes both intracellular and extracellular fluid hypertonic to the tubular fluid. Water follows sodium into the peritubular capillaries. Secondary water reabsorption via osmosis H2O Na + capillary PCT cellTubular lumen

31 Negative ions tend to follow the positive sodium ions by electrostatic attraction. Secondary ion reabsorption via electrostatic attraction Na Na + Cl - capillary PCT cellTubular lumen

32 The glomerulus filters a small amount of protein from the blood. The PCT reclaims it by endocytosis, hydrolzes it to amino acids, and releases these to the ECF by facilitated diffusion. Endocytosis of large solutes protein capillary PCT cellTubular lumen amino acids

33 The Transport Maximum - There is a limit to the amount of solute that the renal tubule can reabsorb because there are limited numbers of transport proteins in the plasma membranes. - If all the transporters are occupied as solute molecules pass through, some solute will remain in the tubular fluid and appear in the urine. Na + Glucose Example of diabetes

34 Glucose in urine high glucose in blood high glucose in filtrate Exceeds reabsorption for glucose

35 Reabsorption in the Nephron Loop

36 - The primary purpose is to establish a high extracellular osmotic concentration. - The thick ascending limb reabsorbs solutes but is impermeable to water. Thus, the tubular fluid becomes very diluted while extracellular fluid becomes very concentrated with solutes. mOsm/L

37 The high osmolarity enables the collecting duct to concentrate the urine later.

38 Reabsorption in Distal Convoluted Tubules

39 - Fluid arriving in the DCT still contains about 20% of the water and 10% of the salts of the glomerular filtrate. - A distinguishing feature of these parts of the renal tubule is that they are subject to hormonal control.

40 Aldosterone a.secreted from adrenal gland in response to a  Na + or a  K + in blood b.to increase Na + absorption and K + secretion in the DCT and cortical portion of the collecting duct. c.helps to maintain blood volume and pressure.

41 Atrial Natriuretic Factor - secreted by the atrial myocardium in response to high blood pressure. - It inhibits sodium and water reabsorption, increases the output of both in the urine, and thus reduces blood volume and pressure.

42 1) Glomerular Filtration 2) Tubular Reabsorption 3) Tubular Secretion 4) Concentrating Urine by Collecting Duct

43 Tubular Secretion - Renal tubule extracts chemicals from the blood and secretes them into the tubular fluid. - serves the purposes of waste removal and acid-base balance. H+H+ H+H+ capillary PCT cellTubular lumen

44 1) Glomerular Filtration 2) Tubular Reabsorption 3) Tubular Secretion 4) Concentrating Urine by Collecting Duct

45 1.The collecting duct (CD) begins in the cortex, where it receives tubular fluid from numerous nephrons. 2.CD reabsorbs water. Cortex collecting duct urine

46 1. Driving force The high osmolarity of extracellular fluid generated by NaCl and urea, provides the driving force for water reabsorption. 2. Regulation The medullary portion of the CD is not permeable to NaCl but permeable to water, depending on ADH. Cortex mOsm/L medulla urine

47 a.In a state of full hydration, antidiuretic hormone (ADH) is not secreted and the CD permeability to water is low, leaving the water to be excreted. Cortex mOsm/L medulla Control of Urine Concentration depends on the body's state of hydration. urine b. In a state of dehydration, ADH is secreted; the CD permeability to water increases. With the increased reabsorption of water by osmosis, the urine becomes more concentrated.

48 Cortex medulla urine No more reabsorption after tubular fluid leaves CD urine

49 Composition and Properties of Urine Fresh urine is clear, containing no blood cells and little proteins. If cloudy, it could indicate the presence of bacteria, semen, blood, or menstrual fluid. Urine Properties

50 Urine Volume An average adult produces 1-2 L of urine per day. a.Excessive urine output is called polyuria. b.Scanty urine output is oliguria. An output of less than 400 mL/day is insufficient to excrete toxic wastes.

51 Diuresis refers to excretion of large amount of urine. Natriuresis refers to enhanced urinary excretion of sodium

52 Diuretics - are chemicals that increase urine volume. They are used for treating hypertension and congestive heart failure because they reduce overall fluid volume. - work by either increasing glomerular filtration or reducing tubular reabsorption. Caffeine falls into the former category; alcohol into the latter (alcohol suppresses the release of ADH).

53 Many diuretics produce osmotic diuresis by inhibiting sodium reabsorption

54 Renal Function Tests

55 Renal Clearance a.the volume of blood plasma from which a particular waste is removed in 1 minute. b.can be measured indirectly by measuring the waste concentration in blood and urine, and the urine volume.

56 2.Glomerular Filtration Rate a.Measuring GFR requires a substance that is not secreted or reabsorbed at all. Inulin, a polymer of fructose, is suitable. b.Inulin filtered by the glomeruli remains in the renal tubule and appears in the urine; none is reabsorbed, and the tubule does not secrete it. For this solute, GFR is equal to the renal clearance.


Download ppt "Renal Physiology Rut Beyene P3. Composition of the Urinary System."

Similar presentations


Ads by Google